Skip to main content

Advertisement

Log in

Correlation between antizyme 1 and differentiation of vascular smooth muscle cells cultured in honeycomb-like type-I collagen matrix

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Vascular smooth muscle cells (SMC) are able to proliferate when cultured on plates, but become differentiated when maintained in three-dimensional type I collagen matrices (honeycombs). SMC grown in honeycombs contained a low level of polyamines due to the presence of antizyme 1 (AZ1), a negative regulator of ornithine decarboxylase (ODC) and of polyamine uptake. To clarify the role of AZ1 in differentiation of SMC in honeycombs, an ODC gene was stably transfected into SMC (ODC-SMC). Although proliferation of ODC-SMC on plates was accelerated together with an increase in phosphorylated focal adhesion kinase (FAK) and a decrease in α-actin and myosin, maker proteins of differentiation, growth of ODC-SMC ceased in honeycombs similarly to normal SMC with a low level of phosphorylated FAK and a high level of α-actin and myosin. AZ1 expression in ODC-SMC on plates was low, but that in honeycombs was high. Antizyme in ODC-SMC in honeycombs not only decreased the level of ODC but also inhibited polyamine uptake activity. These results taken together suggest that low levels of polyamines caused by AZ1 in SMC in honeycombs inhibit phosphorylation of FAK and enhance expression of α-actin and myosin, resulting in differentiation through inhibition of focal adhesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DMEM:

Dulbecco’s modified Eagle’s medium

DTT:

Dithiothreitol

FAK:

Focal adhesion kinase

FBS:

Fetal bovine serum

ODC:

Ornithine decarboxylase

ODC-SMC:

ODC transfected SMC

PBS:

Phosphate-buffered saline

SMC:

Smooth muscle cells

Skp-2:

S-phase kinase-associated protein-2

pTracer-AZΔT205:

pTracer-CMV containing AZ1 without frameshift

pTracer-ODC:

pTracer-CMV encoding the ODC gene

References

  • Auvinen M, Laine A, Paasinen-Sohns A, Kangas A, Kangas L, Saksela O, Andersson LC, Hölttä E (1997) Human ornithine decarboxylase-overproducing NIH3T3 cells induce rapidly growing, highly vascularized tumors in nude mice. Cancer Res 57:3016–3025

    PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Consigny PM (1986) Prevention of restenosis after transluminal angioplasty. Prog Clin Biol Res 219:59–73

    PubMed  CAS  Google Scholar 

  • Faxon DP, Sanborn TA, Haudenschild CC (1987) Mechanism of angioplasty and its relation to restenosis. Am J Cardiol 60:5B–9B

    Article  PubMed  CAS  Google Scholar 

  • Gabbiani G, Schmid E, Winter S, Chaponnier C, de Ckhastonay C, Vandekerckhove J, Weber K, Franke WW (1981) Vascular smooth muscle cells differ from other smooth muscle cells: predominance of vimentin filaments and a specific alpha-type actin. Proc Natl Acad Sci USA 78:298–302

    Article  PubMed  CAS  Google Scholar 

  • Gandre S, Bercovich Z, Kahana C (2002) Ornithine decarboxylase-antizyme is rapidly degraded through a mechanism that requires functional ubiquitin-dependent proteolytic activity. Eur J Biochem 269:1316–1322

    Article  PubMed  CAS  Google Scholar 

  • Hauck CR, Hsia DA, Schlaepfer DD (2000) Focal adhesion kinase facilitates platelet-derived growth factor-BB-stimulated ERK2 activation required for chemotaxis migration of vascular smooth muscle cells. J Biol Chem 275:41092–41099

    Article  PubMed  CAS  Google Scholar 

  • Hayashi K, Saga H, Chimori Y, Kimura K, Yamanaka Y, Sobue K (1998) Differentiated phenotype of smooth muscle cells depends on signaling pathways through insulin-like growth factors and phosphatidylinositol 3-kinase. J Biol Chem 273:28860–28867

    Article  PubMed  CAS  Google Scholar 

  • Hoshino K, Momiyama E, Yoshida K, Nishimura K, Sakai S, Toida T, Kashiwagi K, Igarashi K (2005) Polyamine transport by mammalian cells and mitochondria: role of antizyme and glycosaminoglycans. J Biol Chem 280:42801–42808

    Article  PubMed  CAS  Google Scholar 

  • Igarashi K, Kashiwagi K (2006) Polyamine modulon in Escherichia coli: genes involved in the stimulation of cell growth by polyamines. J Biochem 139:11–16

    Article  PubMed  CAS  Google Scholar 

  • Igarashi K, Kashiwagi K, Hamasaki H, Miura A, Kakegawa T, Hirose S, Matsuzaki S (1986) Formation of a compensatory polyamine by Escherichia coli polyamine-requiring mutants during growth in the absence of polyamines. J Bacteriol 166:128–134

    PubMed  CAS  Google Scholar 

  • Igarashi K, Matsuzaki K, Takeda Y (1971) Aminoacyl transfer RNA formation. I. Absence of pyrophosphate-ATP exchange in aminoacyl-tRNA formation stimulated by polyamines. Biochim Biophys Acta 254:91–103

    PubMed  CAS  Google Scholar 

  • Igarashi K, Matsuzaki K, Takeda Y (1972) Aminoacyl transfer RNA formation. II. Comparison of the mechanisms of aminoacylations stimulated by polyamines and Mg2+. Biochim Biophys Acta 262:476–487

    PubMed  CAS  Google Scholar 

  • Ishii I, Tomizawa A, Kawachi H, Suzuki T, Kotani A, Koshiishi I, Itoh H, Morisaki N, Bujo H, Saito Y, Ohmori S, Kitada M (2001) Histological and functional analysis of vascular smooth muscle cells in a novel culture system with honeycomb-like structure. Atherosclerosis 158:377–384

    Article  PubMed  CAS  Google Scholar 

  • Ito K, Kashiwagi K, Watanabe S, Kameji T, Hayashi S, Igarashi K (1990) Influence of the 5′-untranslated region of ornithine decarboxylase mRNA and spermidine on ornithine decarboxylase synthesis. J Biol Chem 265:13036–13041

    PubMed  CAS  Google Scholar 

  • Kameji T, Hayashi S, Hoshino K, Kakinuma Y, Igarashi K (1993) Multiple regulation of ornithine decarboxylase in enzyme-overproducing cells. Biochem J 289:581–586

    PubMed  CAS  Google Scholar 

  • Kimura M, Takatsuki A, Yamaguchi I (1994) Blasticidin S deaminase gene from Aspergillus terreus (BSD): a new drug resistance gene for transfection of mammalian cells. Biochim Biophys Acta 1219:653–659

    PubMed  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1989) Molecular cloning, a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, New York

  • Matsufuji S, Matsufuji T, Miyazaki Y, Murakami Y, Atkins JF, Gesteland RF, Hayashi S (1995) Autoregulatory frameshifting in decoding mammalian ornithine decarboxylase antizyme. Cell 80:51–60

    Article  PubMed  CAS  Google Scholar 

  • Mitchell JLA, Chen HJ (1990) Conformational changes in ornithine decarboxylase enable recognition by antizyme. Biochim Biophys Acta 1037:115–121

    Article  PubMed  CAS  Google Scholar 

  • Murakami Y, Matsufuji S, Kameji T, Hayashi S, Igarashi K, Tamura T, Tanaka K, Ichihara A (1992) Ornithine decarboxylase is degraded by the 26S proteasome without ubiquitination. Nature 360:597–599

    Article  PubMed  CAS  Google Scholar 

  • Odenlund M, Holmqvist B, Baldetorp B, Hellstrand P, Nilsson BO (2009) Polyamine synthesis inhibition induces S phase cell cycle arrest in vascular smooth muscle cells. Amino Acids 36:273–282

    Article  PubMed  CAS  Google Scholar 

  • Pegg AE (1988) Polyamine metabolism and its importance in neoplastic growth and a target for chemotherapy. Cancer Res. 48:759–774

    PubMed  CAS  Google Scholar 

  • Ray RM, Viar MJ, McCormack SA, Johnson LR (2001) Focal adhesion kinase signaling is decreased in polyamine-depleted IEC-6 cells. Am J Physiol Cell Physiol 281:C475–C485

    PubMed  CAS  Google Scholar 

  • Sakata K, Fukuchi-Shimogori T, Kashiwagi K, Igarashi K (1997) Identification of regulatory region of antizyme necessary for the negative regulation of polyamine transport. Biochem Biophys Res Commun 238:415–419

    Article  PubMed  CAS  Google Scholar 

  • Shimogori T, Kashiwagi K, Igarashi K (1996) Spermidine regulation of protein synthesis at the level of initiation complex formation of Met-tRNAi, mRNA and ribosomes. Biochem Biophys Res Commun 223:544–548

    Article  PubMed  CAS  Google Scholar 

  • Sobue K, Hayashi K, Nishida W (1999) Expressional regulation of smooth muscle cell-specific genes in association with phenotypic modulation. Mol Cell Biochem 190:105–118

    Article  PubMed  CAS  Google Scholar 

  • Spruill LS, McDermott PJ (2009) Role of the 5’-untranslated region in regulating translational efficiency of specific mRNAs in adult cardiocytes. FASEB J 23:2879–2887

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, He Y, Kashiwagi K, Murakami Y, Hayashi S, Igarashi K (1994) Antizyme protects against abnormal accumulation and toxicity of polyamines in ornithine decarboxylase-overproducing cells. Proc Natl Acad Sci USA 91:8930–8934

    Article  PubMed  CAS  Google Scholar 

  • Zhu C, Lang DW, Coffino P (1999) Antizyme2 is a negative regulator of ornithine decarboxylase and polyamine transport. J Biol Chem 274:26425–26430

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. O. A. Jänne for the kind supply of antibody against AZ1, and Dr. S. Matsufuji and Dr. Y. Murakami for the kind supply of antibody against ODC. We also thank Dr. A. J. Michael for his help in preparing the manuscript. This work was supported in part by Special Funds for Education and Research (Development of SPECT Probes for Pharmaceutical Innovation) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itsuko Ishii.

Additional information

I. Ishii, T. Suzuki and H. Kaneko contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishii, I., Suzuki, T., Kaneko, H. et al. Correlation between antizyme 1 and differentiation of vascular smooth muscle cells cultured in honeycomb-like type-I collagen matrix. Amino Acids 42, 565–575 (2012). https://doi.org/10.1007/s00726-011-1034-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-1034-8

Keywords

Navigation