Skip to main content

Advertisement

Log in

Evaluation of functional groups on amino acids in cyclic tetrapeptides in histone deacetylase inhibition

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The naturally occurring cyclic tetrapeptide, chlamydocin, originally isolated from fungus Diheterospora chlamydosphoria, consists of α-aminoisobutyric acid, l-phenylalanine, d-proline and an unusual amino acid (S)-2-amino-8-((S)-oxiran-2-yl)-8-oxooctanoic acid (Aoe) and inhibits the histone deacetylases (HDACs), a class of regulatory enzymes. The epoxyketone moiety of Aoe is the key functional group for inhibition. The cyclic tetrapeptide scaffold is supposed to play important role for effective binding to the surface of enzymes. In place of the epoxyketone group, hydroxamic acid and sulfhydryl group have been applied to design inhibitor ligands to zinc atom in catalytic site of HDACs. In the research for more potent HDAC inhibitors, we replaced the epoxyketone moiety of Aoe with different functional groups and synthesized a series of chlamydocin analogs as HDAC inhibitors. Among the functional groups, methoxymethylketone moiety showed as potent inhibition as the hydroxamic acid. On the contrary, we confirmed that borate, trifruoromethylketone, and 2-aminoanilide are almost inactive in HDAC inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Fig. 3

Similar content being viewed by others

References

  • Bhuiyan MPI, Kato T, Okauchi T et al (2006) Chlamydocin analogs bearing carbonyl group as possible ligand toward zinc atom in histone deacetylases. Bioorg Med Chem 14:3438–3446. doi:10.1016/j.bmc.2005.12.063

    Article  PubMed  CAS  Google Scholar 

  • Butler KV, Kalin J, Brochier C, Vistoli G, Langley B, Kozikowski AP (2010) Rational design and simple chemistry yield a superior, neuroprotective HDAC6 inhibitor, tubastin A. J Am Chem Soc 132:10842–10846. doi:10.1021/ja102758v

    Article  PubMed  CAS  Google Scholar 

  • Closse A, Hugenin R (1974) Isolierung und Strukturaufklärung von Chlamydocin. Helv Chim Acta 57:533–545. doi:10.1002/hlca.19740570306

    Article  PubMed  CAS  Google Scholar 

  • Darkin-Rattray SJ, Gurnett AM, Myers RW et al (1996) Apicidin: a novel antiprotozoal agent that inhibits parasite histone deacetylase. Proc Natl Acad Sci USA 93:13143–13147

    Article  PubMed  CAS  Google Scholar 

  • Furumai R, Komatsu Y, Nishino N et al (2001) Potent histone deacetylase inhibitors built from trichostatin A and cyclic tetrapeptide antibiotics including trapoxin. Proc Natl Acad Sci USA 98:87–92

    Article  PubMed  CAS  Google Scholar 

  • Furumai R, Matsuyama A, Kobashi M (2002) FK228 (depsipeptide) as a natural prodrug that inhibits class1 histone deacetylases1. Cancer Res 62:4916–4921

    PubMed  CAS  Google Scholar 

  • Grozinger CM, Schreiber SL (2002) Deacetylase enzymes: biological functions and the use of small-molecule inhibitors. Chem Biol 9:3–16

    Article  PubMed  CAS  Google Scholar 

  • Han JW, Ahn SH, Park SH et al (2000) Apicidin, a histone deacetylase inhibitor, inhibits proliferation of tumor cells via induction of p21waf1/cip1 and gelsolin1. Cancer Res 60:6068–6074

    PubMed  CAS  Google Scholar 

  • Hassig CA, Schreiber SL (1997) Nuclear histone acetylases and deacetylases and transcriptional regulation: HATS off to HDACs. Curr Opin Chem Biol 1:300–308

    Article  PubMed  CAS  Google Scholar 

  • Hirota A, Suzuki A, Aizawa K, Tamura S (1973a) Structure of Cyl-2, a novel cyclotetrapeptide from Cylindrocladium scoparium. Agric Biol Chem 37:955–956

    Article  CAS  Google Scholar 

  • Hirota A, Suzuki A, Suzuki H, Tamura S (1973b) Isolation and biological activity of cyl-2, a metabolite of Cylindrocladium scoparium. Agric Biol Chem 37:643–647

    Article  CAS  Google Scholar 

  • Hirota A, Suzuki A, Tamura S (1973c) Characterization of four amino acids constituting cyl-2, a metabolite from Cylindrocladium scoparium. Agric Biol Chem 37:1185–1189

    Article  CAS  Google Scholar 

  • Jose B, Oniki Y, Kato T et al (2004) Novel histone deacetylase inhibitors: cyclic tetrapeptide with trifluoromethyl and pentafluoroethyl ketones. Bioorg Med Chem Lett 14:5343–5346. doi:10.1016/j.bmcl.2004.08.016

    Article  PubMed  CAS  Google Scholar 

  • Kapustin GV, Fejér G, Jennifer L, Gronlund JL et al (2003) Phosphorus-based SAHA analogues as histone deacetylase inhibitors. Org Lett 5:3053–3056. doi:10.1021/ol035056n

    Article  PubMed  CAS  Google Scholar 

  • Kijima M, Yoshida M, Suguta K et al (1993) Trapoxin, an antitumor cyclic tetrapeptide, is an irreversible inhibitor of mammalian histone deacetylase. J Biol Chem 268:22249–22435

    Google Scholar 

  • Kouzarides T (1999) Histone acetylases and deacetylases in cell proliferation. Curr Opin Genet Dev 9:40–48

    Article  PubMed  CAS  Google Scholar 

  • Meinke PT, Liberator P (2001) Histone deacetylase: a target for antiproliferative and antiprotozoal agents. Curr Med Chem 8:211–235

    PubMed  CAS  Google Scholar 

  • Nishino N, Jose B, Okamura S et al (2003) Cyclic tetrapeptides bearing a sulfhydryl group potently inhibit histone deacetylases. Org Lett 5:5079–5082. doi:10.1021/ol036098e

    Article  PubMed  CAS  Google Scholar 

  • Nishino N, Yoshikawa D, Watanabe LA et al (2004) Synthesis and histone deacetylase inhibitory activity of cyclic tetrapeptides containing a retrohydroxamate as zinc ligand. Bioorg Med Chem lett 14:2427–2431. doi:10.1016/j.bmcl.2004.03.018

    Article  PubMed  CAS  Google Scholar 

  • Saito A, Yamashita T, Mariko Y (1999) A synthetic inhibitor of histone deacetylase, MS-27–275, with marked in vivo antitumor activity against human tumors. Proc Natl Acad Sci USA 96:4592–4597

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Ando T, Tsuchiya K et al (1999) Synthesis and histone deacetylase inhibitory activity of new benzamide derivatives. J Med Chem 42:3001–3003. doi:10.1021/jm980565u

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Kouketsu A, Matsuura A et al (2004) Thiol-based SAHA analogues as potent histone deacetylase Inhibitors. Bioorg Med Chem Lett 14:3313–3317. doi:10.1016/j.bmcl.2004.03.063

    Article  PubMed  CAS  Google Scholar 

  • Suzuki N, Suzuki T, Ota Y et al (2009) Design, synthesis, and biological activity of boronic acid-based histone deacetylase inhibitors. J Med Chem 52:2909–2922. doi:10.1021/jm900125m

    Article  PubMed  CAS  Google Scholar 

  • Xie W, Zou B, Pei D, Ma D (2005) Total synthesis of cyclic tetrapeptide FR235222, a potent immunosuppressant that inhibits mammalian histone deacetylases. Org Lett 7:2775–2777. doi:10.1021/ol050991r

    Article  PubMed  CAS  Google Scholar 

  • Yoshida M, Kijima M, Akita M, Beppu T (1990) Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J Biol Chem 265:17174–17179

    PubMed  CAS  Google Scholar 

  • Yoshida M, Matsuayama A, Komatsu Y, Nishino N (2003) From discovery to the coming generation of histone deacetylase inhibitors. Curr Med Chem 10:2351–2358. doi:10.2174/092986708784049612

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura K, Tsubotani S, Okazaki K (1995) TAN1746 compounds, their production and use thereof. JP 7196686

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norikazu Nishino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Islam, M.S., Bhuiyan, M.P.I., Islam, M.N. et al. Evaluation of functional groups on amino acids in cyclic tetrapeptides in histone deacetylase inhibition. Amino Acids 42, 2103–2110 (2012). https://doi.org/10.1007/s00726-011-0947-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-0947-6

Keywords

Navigation