Skip to main content

Advertisement

Log in

Peptides derived from Mycobacterium tuberculosis Rv2301 protein are involved in invasion to human epithelial cells and macrophages

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The specific function of putative cut2 protein (or CFP25), encoded by the Rv2301 gene from Mycobacterium tuberculosis H37Rv, has not been identified yet. The aim of this study was to assess some of CFP25 characteristics and its possible biological role in Mycobacterium tuberculosis H37Rv invasion process to target cells. Molecular assays indicated that the gene encoding Rv2301 is present and transcribed in M. tuberculosis complex strains. The presence of Rv2301 protein over the bacilli surface was confirmed by Western blot and immunoelectron microscopy analyses, using goats sera inoculated with synthetic peptides derived from Rv2301 protein. Receptor–ligand binding assays with carcinomic human alveolar basal epithelial cells (A549) and macrophages derived from human histolytic lymphoma monocytes (U937) allowed us to identify five high activity binding peptides (HABPs) in both cell lines, and two additional HABPs only in A549 cells. U937 HABPs binding interactions were characterized by saturation assays, finding dissociation constants (K d) within the nanomolar range and positive cooperativity (n H > 1). Inhibition assays were performed to assess the possible biological role of Rv2301 identified HABPs, finding that some of them were able to inhibit invasion at a 5 μM concentration, compared with the cytochalasin control. On the other hand, HABPs, and especially HABP 36507 located at the N-terminus of the protein, facilitated the internalization of fluorescent latex beads into A549 cells. These findings are of vital importance for the rational selection of Rv2301 HABPs, to be included as components of an antituberculosis vaccine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aderem A, Underhill DM (1999) Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 17:593–623

    Article  PubMed  CAS  Google Scholar 

  • Andreu D, Albericio F, Solé NA, Munson MC, Ferrer M, Barany G (1994) Formation of disulfide bonds in synthetic peptides and proteins. Methods Mol Biol 35:91–169

    PubMed  CAS  Google Scholar 

  • Armstrong JA, Hart PD (1975) Phagosome–lysosome interactions in cultured macrophages infected with virulent tubercle bacilli. Reversal of the usual nonfusion pattern and observations on bacterial survival. J Exp Med 142:1–16

    Article  PubMed  CAS  Google Scholar 

  • Bermudez LE, Goodman J (1996) Mycobacterium tuberculosis invades and replicates within type II alveolar cells. Infect Immun 64:1400–1406

    PubMed  CAS  Google Scholar 

  • Brennan PJ, Nikaido H (1995) The envelope of mycobacteria. Annu Rev Biochem 64:29–63

    Article  PubMed  CAS  Google Scholar 

  • Cambi A, Koopman M, Figdor CG (2005) How C-type lectins detect pathogens. Cell Microbiol 7:481–488

    Article  PubMed  CAS  Google Scholar 

  • Chapeton-Montes JA, Plaza DF, Barrero CA, Patarroyo MA (2008a) Quantitative flow cytometric monitoring of invasion of epithelial cells by Mycobacterium tuberculosis. Front Biosci 13:650–656

    Article  PubMed  CAS  Google Scholar 

  • Chapeton-Montes JA, Plaza DF, Curtidor H, Forero M, Vanegas M, Patarroyo ME, Patarroyo MA (2008b) Characterizing the Mycobacterium tuberculosis Rv2707 protein and determining its sequences which specifically bind to two human cell lines. Protein Sci 17:342–351

    Article  PubMed  CAS  Google Scholar 

  • Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE 3rd, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544

    Article  PubMed  CAS  Google Scholar 

  • Del Portillo P, Murillo LA, Patarroyo ME (1991) Amplification of a species-specific DNA fragment of Mycobacterium tuberculosis and its possible use in diagnosis. J Clin Microbiol 29:2163–2168

    PubMed  CAS  Google Scholar 

  • El-Shazly S, Ahmad S, Mustafa AS, Al-Attiyah R, Krajci D (2007) Internalization by HeLa cells of latex beads coated with mammalian cell entry (Mce) proteins encoded by the mce3 operon of Mycobacterium tuberculosis. J Med Microbiol 56:1145–1151

    Article  PubMed  CAS  Google Scholar 

  • Ernst JD (1998) Macrophage receptors for Mycobacterium tuberculosis. Infect Immun 66:1277–1281

    PubMed  CAS  Google Scholar 

  • Geourjon C, Deleage G (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci 11:681–684

    PubMed  CAS  Google Scholar 

  • Greenberg D, Hingston G, Harman J (1999) Chest wall tuberculosis. Breast J 5:60–62

    Article  PubMed  Google Scholar 

  • Houghten R (1985) General method for the rapid solid phase synthesis of large numbers of peptides: specificity of antigen antibody interaction at the level of individual amino acid. Proc Natl Acad Sci USA 82:5131–5135

    Article  PubMed  CAS  Google Scholar 

  • Hulme E (1993) Receptor–ligand interactions. A practical approach. IRL Press, Oxford

    Google Scholar 

  • Kaufmann SH (2001) How can immunology contribute to the control of tuberculosis? Nat Rev Immunol 1:20–30

    Article  PubMed  CAS  Google Scholar 

  • Kyhse-Andersen J (1984) Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. J Biochem Biophys Meth 10:203–209

    Article  PubMed  CAS  Google Scholar 

  • Lee H, Park HJ, Cho SN, Bai GH, Kim SJ (2000) Species identification of mycobacteria by PCR-restriction fragment length polymorphism of the rpoB gene. J Clin Microbiol 38:2966–2971

    PubMed  CAS  Google Scholar 

  • Mahairas GG, Sabo PJ, Hickey MJ, Singh DC, Stover CK (1996) Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J Bacteriol 178:1274–1282

    PubMed  CAS  Google Scholar 

  • Merrifield RB (1963) Solid phase peptide synthesis. 1. The synthesis of tetrapeptide. J Am Chem Soc 85:2149–2154

    Article  CAS  Google Scholar 

  • Parker SK, Curtin KM, Vasil ML (2007) Purification and characterization of mycobacterial phospholipase A: an activity associated with mycobacterial cutinase. J Bacteriol 189:4153–4160

    Article  PubMed  CAS  Google Scholar 

  • Parra CA, Londono LP, Del Portillo P, Patarroyo ME (1991) Isolation, characterization, and molecular cloning of a specific Mycobacterium tuberculosis antigen gene: identification of a species-specific sequence. Infect Immun 59:3411–3117

    Google Scholar 

  • Passmore JS, Lukey PT, Ress SR (2001) The human macrophage cell line U937 as an in vitro model for selective evaluation of mycobacterial antigen-specific cytotoxic T-cell function. Immunology 102:146–156

    Article  PubMed  CAS  Google Scholar 

  • Patarroyo ME, Patarroyo MA (2008) Emerging rules for subunit-based, multiantigenic, multistage chemically synthesized vaccines. Acc Chem Res 41:377–386

    Article  PubMed  CAS  Google Scholar 

  • Patarroyo MA, Curtidor H, Plaza DF, Ocampo M, Reyes C, Saboya O, Barrera G, Patarroyo ME (2008) Peptides derived from the Mycobacterium tuberculosis Rv1490 surface protein implicated in inhibition of epithelial cell entry: potential vaccine candidates? Vaccine 26:4387–4395

    Article  PubMed  CAS  Google Scholar 

  • Patarroyo ME, Cifuentes G, Martinez NL, Patarroyo MA (2010) Atomic fidelity of subunit-based chemically synthesized antimalarial vaccine components. Prog Biophys Mol Biol 102:38–44

    Article  PubMed  CAS  Google Scholar 

  • Plaza DF, Curtidor H, Patarroyo MA, Chapeton-Montes JA, Reyes C, Barreto J, Patarroyo ME (2007) The Mycobacterium tuberculosis membrane protein Rv2560—biochemical and functional studies. Febs J 274:6352–6364

    Article  PubMed  CAS  Google Scholar 

  • Provencher SW, Glockner J (1981) Estimation of globular protein secondary structure from circular dichroism. Biochemistry 20:33–37

    Article  PubMed  CAS  Google Scholar 

  • Russell DG (2001) Mycobacterium tuberculosis: here today, and here tomorrow. Nat Rev Mol Cell Biol 2:569–577

    Article  PubMed  CAS  Google Scholar 

  • Sable SB, Verma I, Khuller GK (2005) Multicomponent antituberculous subunit vaccine based on immunodominant antigens of Mycobacterium tuberculosis. Vaccine 23:4175–4184

    Article  PubMed  CAS  Google Scholar 

  • Schafer W (1993) The role of cutinase in fungal pathogenicity. Trends Microbiol 1:69–71

    Article  PubMed  CAS  Google Scholar 

  • Sreerama N, Venyaminov SY, Woody RW (1999) Estimation of the number of alpha-helical and beta-strand segments in proteins using circular dichroism spectroscopy. Protein Sci 8:370–380

    Article  PubMed  CAS  Google Scholar 

  • Tam JP, Heath WF, Merrifield RB (1983) An SN2 deprotection of synthetic peptides with a low concentration of hydrofluoric acid in dimethyl sulfide: evidence and application in peptide synthesis. J Am Chem Soc 105:6442–6445

    Article  CAS  Google Scholar 

  • Vera-Bravo R, Torres E, Valbuena JJ, Ocampo M, Rodriguez LE, Puentes A, Garcia JE, Curtidor H, Cortes J, Vanegas M, Rivera ZJ, Diaz A, Calderon MN, Patarroyo MA, Patarroyo ME (2005) Characterising Mycobacterium tuberculosis Rv1510c protein and determining its sequences that specifically bind to two target cell lines. Biochem Biophys Res Commun 332:771–781

    Article  PubMed  CAS  Google Scholar 

  • Wagner B, Fattorini L, Wagner M, Jin SH, Stracke R, Amicosante G, Franceschini N, Orefici G (1995) Antigenic properties and immunoelectron microscopic localization of Mycobacterium fortuitum beta-lactamase. Antimicrob Agents Chemother 39:739–745

    PubMed  CAS  Google Scholar 

  • Warner DF, Mizrahi V (2006) Tuberculosis chemotherapy: the influence of bacillary stress and damage response pathways on drug efficacy. Clin Microbiol Rev 19:558–570

    Article  PubMed  CAS  Google Scholar 

  • Weiland GA, Molinoff PB (1981) Quantitative analysis of drug-receptor interactions: I. Determination of kinetic and equilibrium properties. Life Sci 29:313–330

    Article  PubMed  CAS  Google Scholar 

  • Weldingh K, Rosenkrands I, Jacobsen S, Rasmussen PB, Elhay MJ, Andersen P (1998) Two-dimensional electrophoresis for analysis of Mycobacterium tuberculosis culture filtrate and purification and characterization of six novel proteins. Infect Immun 66:3492–3500

    PubMed  CAS  Google Scholar 

  • West NP, Wozniak TM, Valenzuela J, Feng CG, Sher A, Ribeiro JM, Britton WJ (2008) Immunological diversity within a family of cutinase-like proteins of Mycobacterium tuberculosis. Vaccine 26:3853–3859

    Article  PubMed  CAS  Google Scholar 

  • West NP, Chow FM, Randall EJ, Wu J, Chen J, Ribeiro JM, Britton WJ (2009) Cutinase-like proteins of Mycobacterium tuberculosis: characterization of their variable enzymatic functions and active site identification. Faseb J 23:1694–1704

    Article  PubMed  CAS  Google Scholar 

  • WHO (2009) World Health Organization Report. Global Tuberculosis Control. EPIDEMIOLOGY, STRATEGY, FINANCING

  • Wiker HG, Wilson MA, Schoolnik GK (2000) Extracytoplasmic proteins of Mycobacterium tuberculosis—mature secreted proteins often start with aspartic acid and proline. Microbiology 146(Pt 7):1525–1533

    PubMed  CAS  Google Scholar 

  • Yamamura HI ES, Kuhar MJ (1978) Neurotransmitter receptor binding. Raven Press, New York

Download references

Acknowledgments

We would like to thank Nora Martinez for translating and revising the manuscript.

Conflict of interest

The authors declare no conflict of interest. The authors alone are responsible for the content and writing of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ocampo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ocampo, M., Rodríguez, D.M., Curtidor, H. et al. Peptides derived from Mycobacterium tuberculosis Rv2301 protein are involved in invasion to human epithelial cells and macrophages. Amino Acids 42, 2067–2077 (2012). https://doi.org/10.1007/s00726-011-0938-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-0938-7

Keywords

Navigation