Skip to main content
Log in

Helix-mediated protein–protein interactions as targets for intervention using foldamers

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Protein–protein interactions (PPIs) play a central role in virtually all biological processes and have been the focus of intense investigation from structural molecular biology to cell biology for the majority of the last two decades and, more recently, are emerging as important targets for pharmaceutical intervention. A common motif found at the interface of PPIs is the α-helix, suggesting that, in the same way as the “lock and key” model has evolved for competitive inhibition of enzymes, it should be possible to elaborate “rule-based” approaches for inhibition of helix-mediated PPIs. This review will describe the biological function and structural features of a series of representative helix-mediated PPIs and discuss approaches that are being developed to target these interactions with small molecules that employ non-natural amino acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ahn J-M, Han S-Y (2007) Facile synthesis of benzamides to mimic an α-helix. Tetrahedron Lett 48(20):3543–3547

    Article  CAS  Google Scholar 

  • Babine RE, Bender SL (1997) Molecular recognition of protein-ligand complexes: applications to drug design. Chem Rev 97(5):1359–1472

    Article  PubMed  CAS  Google Scholar 

  • Becerril J, Hamilton AD (2007) Helix mimetics as inhibitors of the interaction of the estrogen receptor with coactivator peptides. Angew Chem Int Ed 46:4471–4473

    Article  CAS  Google Scholar 

  • Bird GH, Madani N, Perry AF, Princiotto AM, Supko JG, He X, Gavathiotis E, Sodroski JG, Walensky LD (2010) Hydrocarbon double-stapling remedies the proteolytic instability of a lengthy peptide therapeutic. Proc Natl Acad Sci USA 107(32):14093–14098

    Article  PubMed  CAS  Google Scholar 

  • Bruning JB, Parent AA, Gil G, Zhao M, Nowak J, Pace MC, Smith CL, Afonine PV, Adams PD, Katzenellenbogen JA, Nettles KW (2010) Coupling of receptor conformation and ligand orientation determine graded activity. Nat Chem Biol 6(11):837–843

    Article  PubMed  CAS  Google Scholar 

  • Campbell F, Plante JP, Edwards TA, Warriner SL, Wilson AJ (2010) N-alkylated oligoamide α-helical proteomimetics. Org Biomol Chem 8(10):2344–2351

    Article  PubMed  CAS  Google Scholar 

  • Certo M, Moore VDG, Nishino M, Korsmeyer S, Armstrong SA, Letai A (2006) Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell 9:351–365

    Article  PubMed  CAS  Google Scholar 

  • Chan DC, Fass D, Berger JM, Kim PS (1997) HIV gp41 core structure. Cell 89:263–273

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Willis SN, Wei A, Smith BJ, Fletcher JI, Hinds MG, Colman PM, Day CL, Adams JM, Huang DCS (2005) Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell 17:393–403

    Article  PubMed  CAS  Google Scholar 

  • Cheng RP, Gellman SH, DeGrado WF (2001) β-Peptides: from structure to function. Chem Rev 101(10):3219–3232

    Article  PubMed  CAS  Google Scholar 

  • Cummings CG, Hamilton AD (2010) Disrupting protein–protein interactions with non-peptidic, small molecule α-helix mimetics. Curr Opin Chem Biol 14(3):341–346

    Article  PubMed  CAS  Google Scholar 

  • Cutler S, McCourt P (2005) Dude, where’s my phenotype? Dealing with redundancy in signaling networks. Plant Physiol 138(2):558–559

    Article  PubMed  CAS  Google Scholar 

  • Czabotar PE, Lee EF, van Delft MF, Day CL, Smith BJ, Huang DCS, Fairlie WD, Hinds MG, Colman PM (2007) Structural insights into the degradation of Mcl-1 induced by BH3 domains. Proc Natl Acad Sci USA 104(15):6217–6222

    Article  PubMed  CAS  Google Scholar 

  • Dames SA, Martinez-Yamout M, De Guzman RN, Dyson HJ, Wright PE (2002) Structural basis for Hif-1α/CBP recognition in the cellular hypoxic response. Proc Natl Acad Sci USA 99(8):5271–5276

    Article  PubMed  CAS  Google Scholar 

  • Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116:205–219

    Article  PubMed  CAS  Google Scholar 

  • Gamble TR, Yoo S, Vajdos FF, von Schwedler UK, Worthylake DK, Wang H, McCutcheon JP, Sundquist WI, Hill CP (1997) Structure of the carboxyl-terminal dimerization domain of the HIV-1 capsid protein. Science 278(5339):849–853

    Article  PubMed  CAS  Google Scholar 

  • Gellman SH (1998) Foldamers: a manifesto. Acc Chem Res 31:178–190

    Article  Google Scholar 

  • Goodman CM, Choi S, Shandler S, DeGrado WF (2007) Foldamers as versatile frameworks for the design and evolution of function. Nat Chem Biol 3(5):252–262

    Article  PubMed  CAS  Google Scholar 

  • Harker EA, Daniels DS, Guarracino DA, Schepartz A (2009) β-Peptides with improved affinity for hDM2 and hDMX. Bioorg Med Chem 17:2038–2046

    Article  PubMed  CAS  Google Scholar 

  • Harrison RS, Shepherd NE, Hoang HN, Ruiz-Gómez G, Hill TA, Driver RW, Desai VS, Young PR, Abbenante G, Fairlie DP (2010) Downsizing human, bacterial, and viral proteins to short water-stable alpha helices that maintain biological potency. Proc Natl Acad Sci USA 107(26):11686–11691

    Article  PubMed  CAS  Google Scholar 

  • Heinlein CA, Chang CS (2004) Androgen receptor in prostate cancer. Endocr Rev 25(2):276–308

    Article  PubMed  CAS  Google Scholar 

  • Henchey LK, Kushal S, Dubey R, Chapman RN, Olenyuk BZ, Arora PS (2010a) Inhibition of hypoxia inducible factor 1-transcription coactivator interaction by a hydrogen bond surrogate α-helix. J Am Chem Soc 132(3):941–943

    Article  PubMed  CAS  Google Scholar 

  • Henchey LK, Porter JR, Ghosh I, Arora PS (2010b) High specificity in protein recognition by hydrogen-bond-surrogate α-helices: selective inhibition of the p53/MDM2 complex. ChemBioChem 11(15):2104–2107

    Article  PubMed  CAS  Google Scholar 

  • Herynk MH, Fuqua SAW (2004) Estrogen receptor mutations in human disease. Endocr Rev 25(6):869–898

    Article  PubMed  CAS  Google Scholar 

  • Horne WS, Boersma MD, Windsor MA, Gellman SH (2008) Sequence-based design of α/β-peptide foldamers that mimic BH3 domains. Angew Chem Int Ed 47(15):2853–2856

    Article  CAS  Google Scholar 

  • Horne WS, Johnson LM, Ketas TJ, Klasse PJ, Lu M, Moore JP, Gellman SH (2009) Structural and biological mimicry of protein surface recognition by α/β-peptide foldamers. Proc Natl Acad Sci USA 106(35):14751–14756

    Article  PubMed  CAS  Google Scholar 

  • Hur E, Pfaff SJ, Payne ES, Gron H, Buehrer BM, Fletterick RJ (2004) Recognition and accommodation at the androgen receptor coactivator binding interface. PLoS Biol 2(9):1303–1312

    Article  Google Scholar 

  • Jochim AL, Arora PS (2009) Assessment of helical interfaces in protein–protein interactions. Mol BioSys 5(9):924–926

    Article  CAS  Google Scholar 

  • Jochim AL, Arora PS (2010) Systematic analysis of helical protein interfaces reveals targets for synthetic inhibitors. ACS Chem Biol 5(10):919–923

    Article  PubMed  CAS  Google Scholar 

  • Keskin O, Gursoy A, Ma B, Nussinov R (2008) Principles of protein–protein interactions: what are the preferred ways for proteins to interact. Chem Rev 108(4):1225–1244

    Article  PubMed  CAS  Google Scholar 

  • Kong EH, Pike ACW, Hubbard RE (2003) Structure and mechanism of the oestrogen receptor. Biochem Soc Trans 31(1):56–59

    Article  PubMed  CAS  Google Scholar 

  • Kritzer JA, Lear JD, Hodsdon ME, Schepartz A (2004) Helical β-peptide inhibitors of the p53-hDM2 interaction. J Am Chem Soc 126(31):9468–9469

    Article  PubMed  CAS  Google Scholar 

  • Lee EF, Sadowsky JD, Smith BJ, Czabotar PE, Peterson-Kaufman KJ, Colman PM, Gellman SH, Fairlie WD (2009) High-resolution structural characterization of a helical α/β-peptide foldamer bound to the anti-apoptotic protein Bcl-xL. Angew Chem Int Ed 48 (24):4318–4322

    Google Scholar 

  • Liu X, Dai S, Zhu Y, Marrack P, Kappler JW (2003) The structure of a Bcl-xL/Bim fragment complex: implications for Bim function. Immunity 19(3):341–352

    Article  PubMed  CAS  Google Scholar 

  • Lu NZ, Wardell SE, Burnstein KL, Defranco D, Fuller PJ, Giguere V, Hochberg RB, McKay L, Renoir JM, Weigel NL, Wilson EM, McDonnell DP, Cidlowski JA (2006) International Union of Pharmacology. LXV. The pharmacology and classification of the nuclear receptor superfamily: glucocorticoid, mineralocorticoid, progesterone, and androgen receptors. Pharmacol Rev 58(4):782–797

    Article  PubMed  CAS  Google Scholar 

  • Marimganti S, Cheemala MN, Ahn J-M (2009) Novel amphiphilic α-helix mimetics based on a bis-benzamide scaffold. Org Lett 11(19):4418–4421

    Article  PubMed  CAS  Google Scholar 

  • Moellering RE, Cornejo M, Davis TN, Bianco CD, Aster JC, Blacklow SC, Kung AL, Gilliland DG, Verdine GL, Bradner JE (2009) Direct inhibition of the NOTCH transcription factor complex. Nature 462:182–188

    Article  PubMed  CAS  Google Scholar 

  • Mumm JS, Kopan R (2000) Notch signaling: from the outside in. Dev Biol 228(2):151–165

    Article  PubMed  CAS  Google Scholar 

  • Nam Y, Sliz P, Song L, Aster JC, Blacklow SC (2006) Structural basis for cooperativity in recruitment of MAML coactivators to notch transcription complexes. Cell 124(5):973–983

    Article  PubMed  CAS  Google Scholar 

  • Nomura M, Uda-Tochio H, Murai K, Mori N, Nishimura Y (2005) The neural repressor NRSF/REST binds the PAH1 domain of the sin3 corepressor by using its distinct short hydrophobic helix. J Mol Biol 354:903–915

    Article  PubMed  CAS  Google Scholar 

  • Ooi L, Wood IC (2007) Chromatin crosstalk in development and disease: lessons from REST. Nat Rev Genet 8(7):544–554

    Article  PubMed  CAS  Google Scholar 

  • Orner BP, Ernst JT, Hamilton AD (2001) Towards proteomimetics: terphenyl derivatives as structural and functional mimics of extended regions of an α-helix. J Am Chem Soc 123(22):5382–5383

    Article  PubMed  CAS  Google Scholar 

  • Plante J, Campbell F, Malkova B, Kilner C, Warriner SL, Wilson AJ (2008) Synthesis of functionalised aromatic oligamide rods. Org Biomol Chem 6(1):138–146

    Article  PubMed  CAS  Google Scholar 

  • Plante JP, Burnley T, Malkova B, Webb ME, Warriner SL, Edwards TA, Wilson AJ (2009) Oligobenzamide proteomimetic inhibitors of the p53-hDM2 protein-protein interaction. Chem Commun 34:5091–5093

    Article  Google Scholar 

  • Pornillos O, Ganser-Pornillos BK, Yeager M (2011) Atomic-level modelling of the HIV capsid. Nature 469(7330):424–427

    Article  PubMed  CAS  Google Scholar 

  • Reiling KK, Pray TR, Craik CS, Stroud RM (2000) Functional consequences of the kaposi’s sarcoma-associated herpesvirus protease structure: regulation of activity and dimerization by conserved structural elements. Biochemistry 39(42):12796–12803

    Article  PubMed  CAS  Google Scholar 

  • Ripka AS, Rich DH (1998) Peptidomimetic design. Curr Opin Chem Biol 2(4):441–452

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez JM, Hamilton AD (2007) Benzoylurea oligomers: synthetic foldamers that mimic extended α-helices. Angew Chem Int Ed 46(45):8614–8617

    Article  CAS  Google Scholar 

  • Romer L, Klein C, Dehner A, Kessler H, Buchner J (2006) p53-A natural cancer killer: structural insights and therapeutic concepts. Angew Chem Int Ed 45:6440–6460

    Article  CAS  Google Scholar 

  • Rossman KL, Worthylake DK, Snyder JT, Siderovski DP, Campbell SL, Sondek J (2002) A crystallographic view of interactions between Dbs and Cdc42: PH domain-assisted guanine nucleotide exchange. EMBO J 21(6):1315–1326

    Article  PubMed  CAS  Google Scholar 

  • Sadowsky JD, Fairlie WD, Hadley EB, Lee H-S, Umezawa N, Nikolovska-Coleska Z, Wang S, Huang DCS, Tomita Y, Gellman SH (2007) (α/β+α)-Peptide antagonists of BH3 domain/Bcl-xL recognition: toward general strategies for foldamer-based inhibition of protein–protein interactions. J Am Chem Soc 129:139–154

    Article  PubMed  CAS  Google Scholar 

  • Saraogi I, Hamilton AD (2008) α-Helix mimetics as inhibitors of protein–protein interactions. Biochem Soc Trans 36(6):1414–1417

    Article  PubMed  CAS  Google Scholar 

  • Saraogi I, Incarvito CD, Hamilton AD (2008) Controlling curvature in a family of oligoamide α-helix mimetics. Angew Chem Int Ed 47(50):9691–9694

    Article  CAS  Google Scholar 

  • Sattler M, Liang H, Nettesheim D, Meadows RP, Harlan JE, Eberstadt M, Yoon HS, Shuker SB, Chang BS, Minn AJ, Thompson CB, Fesik SW (1997) Structure of Bcl-x(L)-Bak peptide complex: recognition between regulators of apoptosis. Science 275(5302):983–986

    Article  PubMed  CAS  Google Scholar 

  • Schreiber SL (2000) Target-oriented and diversity-oriented organic synthesis in drug discovery. Science 287(5460):1964–1969

    Article  PubMed  CAS  Google Scholar 

  • Seebach D, Beck AK, Bierbaum DJ (2004) The world of β- and γ-peptides comprised of homologated proteinogenic amino acids and other components. Chem Biodivers 1(8):1111–1239

    Article  PubMed  CAS  Google Scholar 

  • Shaginian A, Whitby LR, Hong S, Hwang I, Farooqi B, Searcey M, Chen J, Vogt PK, Boger DL (2009) Design, synthesis, and evaluation of an α-helix mimetic library targeting protein–protein interactions. J Am Chem Soc 131(13):5564–5572

    Article  PubMed  CAS  Google Scholar 

  • Shahian T, Lee GM, Lazic A, Arnold LA, Velusamy P, Roels CM, Guy RK, Craik CS (2009) Inhibition of a viral enzyme by a small-molecule dimer disruptor. Nat Chem Biol 5(9):640–646

    Article  PubMed  CAS  Google Scholar 

  • Shangary S, Qin D, McEachern D, Liu M, Miller RS, Qiu S, Nikolovska-Coleska Z, Ding K, Wang G, Chen J, Bernard D, Zhang J, Lu Y, Gu Q, Shah RB, Pienta KJ, Ling X, Kang S, Guo M, Sun Y, Yang D, Wang S (2008) Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition. Proc Natl Acad Sci USA 105(10):3933–3938

    Article  PubMed  CAS  Google Scholar 

  • Shepherd NE, Hoang HN, Desai VS, Letouze E, Young PR, Fairlie DP (2006) Modular α-helical mimetics with antiviral activity against respiratory syncytial virus. J Am Chem Soc 128(40):13284–13289

    Article  PubMed  CAS  Google Scholar 

  • Sia SK, Carr PA, Cochran AG, Malashkevich VN, Kim PS (2002) Short constrained peptides that inhibit HIV-1 entry. Proc Natl Acad Sci USA 99:14664–14669

    Article  PubMed  CAS  Google Scholar 

  • Stephens OM, Kim S, Welch BD, Hodsdon ME, Kay MS, Schepartz A (2005) Inhibiting HIV fusion with a β-peptide foldamer. J Am Chem Soc 127:13126–13127

    Article  PubMed  CAS  Google Scholar 

  • Stewart ML, Fire E, Keating AE, Walensky LD (2010) The MCL-1 BH3 helix is an exclusive MCL-1 inhibitor and apoptosis sensitizer. Nat Chem Biol 6(8):595–601

    Article  PubMed  CAS  Google Scholar 

  • Stites WE (1997) Protein-protein interactions: interface structure, binding thermodynamics, and mutational analysis. Chem Rev 97(5):1233–1250

    Article  PubMed  CAS  Google Scholar 

  • Tošovská P, Arora PS (2010) Oligooxopiperazines as nonpeptidic α-helix mimetics. Org Lett 12(7):1588–1591

    Article  PubMed  Google Scholar 

  • Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C, Fotouhi N, Liu EA (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303(5659):844–848

    Article  PubMed  CAS  Google Scholar 

  • von Schwedler UK, Stemmler TL, Klishko VY, Li S, Albertine KH, Davis DR, Sundquist WI (1998) Proteolytic refolding of the HIV-1 capsid protein amino-terminus facilitates viral core assembly. EMBO J 17(6):1555–1568

    Article  Google Scholar 

  • Walensky LD, Kung AL, Escher I, Malia TJ, Barbuto S, Wright RD, Wagner G, Verdine GL, Korsmeyer SJ (2004) Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science 305:1466–1470

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Liao W, Arora PS (2005) Enhanced metabolic stability and protein-binding properties of artificial α-helices derived from a hydrogen-bond surrogate: application to Bcl-xL. Angew Chem Int Ed 44:6525–6529

    Article  CAS  Google Scholar 

  • Willis SN, Chen L, Dewson G, Wei A, Naik E, Fletcher JI, Adams JM, Huang DCS (2005) Proapoptotic Bak is sequestered by Mcl-1 and Bxl-xL, but not Bcl-2, until displaced by BH3-only proteins. Genes Dev 19:1294–1305

    Article  PubMed  CAS  Google Scholar 

  • Wilson AJ (2009) Inhibition of protein–protein interactions using designed molecules. Chem Soc Rev 38(12):3289–3300

    Article  PubMed  CAS  Google Scholar 

  • Worthylake DK, Wang H, Yoo S, Sundquist WI, Hill CP (1999) Structures of the HIV-1 capsid protein dimerization domain at 2.6 Å resolution. Acta Crystallogr D 55(1):85–92

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Griffin JD (2004) Modulation of Notch signaling by mastermind-like (MAML) transcriptional co-activators and their involvement in tumorigenesis. Semin Cancer Biol 14(5):348–356

    Article  PubMed  CAS  Google Scholar 

  • Yin H, Lee G-I, Sedey KA, Kutzki O, Park HS, Orner BP, Ernst JT, Wang H-G, Sebti SM, Hamilton AD (2005) Terphenyl-based Bak BH3 α-helical proteomimetics as low-molecular weight antagonists of Bcl-xL. J Am Chem Soc 127(29):10191–10196

    Article  PubMed  CAS  Google Scholar 

  • Zhao X, Singh M, Malashkevich VN, Kim PS (2000) Structural characterization of the human respiratory syncytial virus fusion protein core. Proc Natl Acad Sci USA 97(26):14172–14177

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support of the European Research Council [ERC-StG-240324].

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Wilson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edwards, T.A., Wilson, A.J. Helix-mediated protein–protein interactions as targets for intervention using foldamers. Amino Acids 41, 743–754 (2011). https://doi.org/10.1007/s00726-011-0880-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-0880-8

Keywords

Navigation