Skip to main content

Advertisement

Log in

EAAT expression by macrophages and microglia: still more questions than answers

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Glutamate is the main excitatory amino acid, but its presence in the extracellular milieu has deleterious consequences. It may induce excitotoxicity and also compete with cystine for the use of the cystine–glutamate exchanger, blocking glutathione neosynthesis and inducing an oxidative stress-induced cell death. Both mechanisms are critical in the brain where up to 20% of total body oxygen consumption occurs. In normal conditions, the astrocytes ensure that extracellular concentration of glutamate is kept in the micromolar range, thanks to their coexpression of high-affinity glutamate transporters (EAATs) and glutamine synthetase (GS). Their protective function is nevertheless sensitive to situations such as oxidative stress or inflammatory processes. On the other hand, macrophages and microglia do not express EAATs and GS in physiological conditions and are the principal effector cells of brain inflammation. Since the late 1990s, a number of studies have now shown that both microglia and macrophages display inducible EAAT and GS expression, but the precise significance of this still remains poorly understood. Brain macrophages and microglia are sister cells but yet display differences. Both are highly sensitive to their microenvironment and can perform a variety of functions that may oppose each other. However, in the very particular environment of the healthy brain, they are maintained in a repressed state. The aim of this review is to present the current state of knowledge on brain macrophages and microglial cells activation, in order to help clarify their role in the regulation of glutamate under pathological conditions as well as its outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

AEG:

Astrocyte elevated gene

BBB:

Blood–brain barrier

CD:

Cluster of differentiation

CNS:

Central nervous system

CCR:

Chemokine (C-C motif) receptor

CX3CL:

Chemokine (C-X3-C motif) ligand

CX3CR:

Chemokine (C-X3-C motif) receptor

EAAT:

Excitatory amino acid transporter

EGF:

Epidermal growth factor

FGF:

Fibroblast growth factor

FIZZ1:

Found in Inflammatory Zone 1, a marker of alternative activation in murine macrophages

GS:

Glutamine synthetase

GSH:

l-γ-Glutamyl-l-cysteinyl-glycine (glutathione)

GSSG:

Oxidised form of glutathione

HIV:

Human immunodeficiency virus

IFN:

Interferon

IL:

Interleukin

ITIM:

Immunoreceptor tyrosine-based inhibition motif

MDM:

Monocyte-derived macrophages

mGluR:

Metabotropic glutamate receptors

MHC:

Major histocompatibility complex

NF-κB:

Nuclear factor-κB.

PDGF:

Platelet-derived growth factor

PG:

Prostaglandin

SIRPα:

Signal-regulatory protein α

SIV:

Simian immunodeficiency virus

TGF:

Transforming growth factor

TNF:

Tumour necrosis factor

TREM2:

Triggering receptor expressed on myeloid cells 2

VGLUT:

Vesicular glutamate transporter

xCT:

Light chain subunit of the x c cystine/glutamate exchanger

Ym1:

A heparin-binding lectin, a marker of alternative activation in murine macrophages

References

  • Adams RA, Bauer J, Flick MJ, Sikorski SL, Nuriel T, Lassmann H, Degen JL, Akassoglou K (2007) The fibrin-derived gamma 377–395 peptide inhibits microglia activation and suppresses relapsing paralysis in central nervous system autoimmune disease. J Exp Med 204:571–582

    PubMed  CAS  Google Scholar 

  • Alliot F, Godin I, Pessac B (1999) Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Brain Res Dev Brain Res 117:145–152

    PubMed  CAS  Google Scholar 

  • Aoyama K, Suh SW, Hamby AM, Liu J, Chan WY, Chen Y, Swanson RA (2006) Neuronal glutathione deficiency and age-dependent neurodegeneration in the EAAC1 deficient mouse. Nat Neurosci 9:119–126

    PubMed  CAS  Google Scholar 

  • Arriza JL, Eliasof S, Kavanaugh MP, Amara SG (1997) Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proc Natl Acad Sci USA 94:4155–4160

    PubMed  CAS  Google Scholar 

  • Attwell D, Barbour B, Szatkowski M (1993) Nonvesicular release of neurotransmitter. Neuron 11:401–407

    PubMed  CAS  Google Scholar 

  • Bannai S (1986) Exchange of cystine and glutamate across plasma membrane of human fibroblasts. J Biol Chem 261:2256–2263

    PubMed  CAS  Google Scholar 

  • Broer S, Brookes N (2001) Transfer of glutamine between astrocytes and neurons. J Neurochem 77:705–719

    PubMed  CAS  Google Scholar 

  • Broer A, Brookes N, Ganapathy V, Dimmer KS, Wagner CA, Lang F, Broer S (1999) The astroglial ASCT2 amino acid transporter as a mediator of glutamine efflux. J Neurochem 73:2184–2194

    PubMed  CAS  Google Scholar 

  • Brooke SM, Sapolsky RM (2003) Effects of glucocorticoids in the gp120-induced inhibition of glutamate uptake in hippocampal cultures. Brain Res 972:137–141

    PubMed  CAS  Google Scholar 

  • Buechler C, Ritter M, Orso E, Langmann T, Klucken J, Schmitz G (2000) Regulation of scavenger receptor CD163 expression in human monocytes and macrophages by pro- and antiinflammatory stimuli. J Leukoc Biol 67:97–103

    PubMed  CAS  Google Scholar 

  • Byrnes KR, Loane DJ, Faden AI (2009) Metabotropic glutamate receptors as targets for multipotential treatment of neurological disorders. Neurotherapeutics 6:94–107

    PubMed  CAS  Google Scholar 

  • Cardona AE, Pioro EP, Sasse ME, Kostenko V, Cardona SM, Dijkstra IM, Huang D, Kidd G, Dombrowski S, Dutta R, Lee JC, Cook DN, Jung S, Lira SA, Littman DR, Ransohoff RM (2006) Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci 9:917–924

    PubMed  CAS  Google Scholar 

  • Chaudhry FA, Reimer RJ, Krizaj D, Barber D, Storm-Mathisen J, Copenhagen DR, Edwards RH (1999) Molecular analysis of system N suggests novel physiological roles in nitrogen metabolism and synaptic transmission. Cell 99:769–780

    PubMed  CAS  Google Scholar 

  • Chretien F, Vallat-Decouvelaere AV, Bossuet C, Rimaniol AC, Le Grand R, Le Pavec G, Creminon C, Dormont D, Gray F, Gras G (2002) Expression of excitatory amino acid transporter-2 (EAAT-2) and glutamine synthetase (GS) in brain macrophages and microglia of SIVmac251-infected macaques. Neuropathol Appl Neurobiol 28:410–417

    PubMed  CAS  Google Scholar 

  • Chretien F, Le Pavec G, Vallat-Decouvelaere AV, Delisle MB, Uro-Coste E, Ironside JW, Gambetti P, Parchi P, Creminon C, Dormont D, Mikol J, Gray F, Gras G (2004) Expression of excitatory amino acid transporter-1 (EAAT-1) in brain macrophages and microglia of patients with prion diseases. J Neuropathol Exp Neurol 63:1058–1071

    PubMed  CAS  Google Scholar 

  • Colton CA, Mott RT, Sharpe H, Xu Q, Van Nostrand WE, Vitek MP (2006) Expression profiles for macrophage alternative activation genes in AD and in mouse models of AD. J Neuroinflammation 3:27

    PubMed  Google Scholar 

  • Daikhin Y, Yudkoff M (2000) Compartmentation of brain glutamate metabolism in neurons and glia. J Nutr 130:1026S–1031S

    PubMed  CAS  Google Scholar 

  • Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8:752–758

    PubMed  CAS  Google Scholar 

  • De Simone R, Ajmone-Cat MA, Tirassa P, Minghetti L (2003) Apoptotic PC12 cells exposing phosphatidylserine promote the production of anti-inflammatory and neuroprotective molecules by microglial cells. J Neuropathol Exp Neurol 62:208–216

    PubMed  Google Scholar 

  • De Simone R, Ajmone-Cat MA, Minghetti L (2004) Atypical antiinflammatory activation of microglia induced by apoptotic neurons: possible role of phosphatidylserine-phosphatidylserine receptor interaction. Mol Neurobiol 29:197–212

    PubMed  Google Scholar 

  • Derouiche A, Frotscher M (1991) Astroglial processes around identified glutamatergic synapses contain glutamine synthetase: evidence for transmitter degradation. Brain Res 552:346–350

    PubMed  CAS  Google Scholar 

  • Derouiche A, Rauen T (1995) Coincidence of l-glutamate/l-aspartate transporter (GLAST) and glutamine synthetase (GS) immunoreactions in retinal glia: evidence for coupling of GLAST and GS in transmitter clearance. J Neurosci Res 42:131–143

    PubMed  CAS  Google Scholar 

  • Derouiche A, Hartig W, Brauer K, Bruckner G (1996) Spatial relationship of lectin-labelled extracellular matrix and glutamine synthetase-immunoreactive astrocytes in rat cortical forebrain regions. J Anat 189:363–372

    PubMed  Google Scholar 

  • Dreyer EB, Lipton SA (1995) The coat protein gp120 of HIV-1 inhibits astrocyte uptake of excitatory amino acids via macrophage arachidonic acid. Eur J Neurosci 7:2502–2507

    PubMed  CAS  Google Scholar 

  • Fabriek BO, Van Haastert ES, Galea I, Polfliet MM, Dopp ED, Van Den Heuvel MM, Van Den Berg TK, De Groot CJ, Van Der Valk P, Dijkstra CD (2005) CD163-positive perivascular macrophages in the human CNS express molecules for antigen recognition and presentation. Glia 51:297–305

    PubMed  Google Scholar 

  • Fairman WA, Vandenberg RJ, Arriza JL, Kavanaugh MP, Amara SG (1995) An excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Nature 375:599–603

    PubMed  CAS  Google Scholar 

  • Figiel M, Maucher T, Rozyczka J, Bayatti N, Engele J (2003) Regulation of glial glutamate transporter expression by growth factors. Exp Neurol 183:124–135

    PubMed  CAS  Google Scholar 

  • Fine SM, Angel RA, Perry SW, Epstein LG, Rothstein JD, Dewhurst S, Gelbard HA (1996) Tumor necrosis factor alpha inhibits glutamate uptake by primary human astrocytes. Implications for pathogenesis of HIV-1 dementia. J Biol Chem 271:15303–15306

    PubMed  CAS  Google Scholar 

  • Fonnum F (1984) Glutamate: a neurotransmitter in mammalian brain. J Neurochem 42:1–11

    PubMed  CAS  Google Scholar 

  • Fremeau RT Jr, Burman J, Qureshi T, Tran CH, Proctor J, Johnson J, Zhang H, Sulzer D, Copenhagen DR, Storm-Mathisen J, Reimer RJ, Chaudhry FA, Edwards RH (2002) The identification of vesicular glutamate transporter 3 suggests novel modes of signaling by glutamate. Proc Natl Acad Sci USA 99:14488–14493

    PubMed  CAS  Google Scholar 

  • Galea I, Palin K, Newman TA, Van Rooijen N, Perry VH, Boche D (2005) Mannose receptor expression specifically reveals perivascular macrophages in normal, injured, and diseased mouse brain. Glia 49:375–384

    PubMed  Google Scholar 

  • Gegelashvili G, Schousboe A (1997) High affinity glutamate transporters: regulation of expression and activity. Mol Pharmacol 52:6–15

    PubMed  CAS  Google Scholar 

  • Geissmann F, Jung S, Littman DR (2003) Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19:71–82

    PubMed  CAS  Google Scholar 

  • Gras G, Chretien F, Vallat-Decouvelaere AV, Le Pavec G, Porcheray F, Bossuet C, Leone C, Mialocq P, Dereuddre-Bosquet N, Clayette P, Le Grand R, Creminon C, Dormont D, Rimaniol AC, Gray F (2003) Regulated expression of sodium-dependent glutamate transporters and synthetase: a neuroprotective role for activated microglia and macrophages in HIV infection? Brain Pathol 13:211–222

    PubMed  CAS  Google Scholar 

  • Gras G, Porcheray F, Samah B, Leone C (2006) The glutamate–glutamine cycle as an inducible, protective face of macrophage activation. J Leukoc Biol 80:1067–1075

    PubMed  CAS  Google Scholar 

  • Gu S, Roderick HL, Camacho P, Jiang JX (2000) Identification and characterization of an amino acid transporter expressed differentially in liver. Proc Natl Acad Sci USA 97:3230–3235

    PubMed  CAS  Google Scholar 

  • Had-Aissouni L (2011) Toward a new role for plasma membrane sodium-dependent glutamate transporters of astrocytes: maintenance of antioxidant defenses beyond extracellular glutamate clearance. Amino Acids (this issue)

  • Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394

    PubMed  CAS  Google Scholar 

  • Himi T, Ikeda M, Yasuhara T, Nishida M, Morita I (2003) Role of neuronal glutamate transporter in the cysteine uptake and intracellular glutathione levels in cultured cortical neurons. J Neural Transm 110:1337–1348

    PubMed  CAS  Google Scholar 

  • Hogger P, Dreier J, Droste A, Buck F, Sorg C (1998) Identification of the integral membrane protein RM3/1 on human monocytes as a glucocorticoid-inducible member of the scavenger receptor cysteine-rich family (CD163). J Immunol 161:1883–1890

    PubMed  CAS  Google Scholar 

  • Jacobsson J, Persson M, Hansson E, Ronnback L (2006) Corticosterone inhibits expression of the microglial glutamate transporter GLT-1 in vitro. Neuroscience 139:475–483

    PubMed  CAS  Google Scholar 

  • Jimenez S, Baglietto-Vargas D, Caballero C, Moreno-Gonzalez I, Torres M, Sanchez-Varo R, Ruano D, Vizuete M, Gutierrez A, Vitorica J (2008) Inflammatory response in the hippocampus of PS1M146L/APP751SL mouse model of Alzheimer’s disease: age-dependent switch in the microglial phenotype from alternative to classic. J Neurosci 28:11650–11661

    PubMed  CAS  Google Scholar 

  • Kanai Y, Hediger MA (1992) Primary structure and functional characterization of a high-affinity glutamate transporter. Nature 360:467–471

    PubMed  CAS  Google Scholar 

  • Kang DC, Su ZZ, Sarkar D, Emdad L, Volsky DJ, Fisher PB (2005) Cloning and characterization of HIV-1-inducible astrocyte elevated gene-1, AEG-1. Gene 353:8–15

    PubMed  CAS  Google Scholar 

  • Kaushal V, Schlichter LC (2008) Mechanisms of microglia-mediated neurotoxicity in a new model of the stroke penumbra. J Neurosci 28:2221–2230

    PubMed  CAS  Google Scholar 

  • Kida S, Steart PV, Zhang ET, Weller RO (1993) Perivascular cells act as scavengers in the cerebral perivascular spaces and remain distinct from pericytes, microglia and macrophages. Acta Neuropathol 85:646–652

    PubMed  CAS  Google Scholar 

  • Kodelja V, Goerdt S (1994) Dissection of macrophage differentiation pathways in cutaneous macrophage disorders and in vitro. Exp Dermatol 3:257–268

    PubMed  CAS  Google Scholar 

  • Koizumi S, Shigemoto-Mogami Y, Nasu-Tada K, Shinozaki Y, Ohsawa K, Tsuda M, Joshi BV, Jacobson KA, Kohsaka S, Inoue K (2007) UDP acting at P2Y6 receptors is a mediator of microglial phagocytosis. Nature 446:1091–1095

    PubMed  CAS  Google Scholar 

  • Kort JJ (1998) Impairment of excitatory amino acid transport in astroglial cells infected with the human immunodeficiency virus type 1. AIDS Res Hum Retroviruses 14:1329–1339

    PubMed  CAS  Google Scholar 

  • Lawson LJ, Perry VH, Gordon S (1992) Turnover of resident microglia in the normal adult mouse brain. Neuroscience 48:405–415

    PubMed  CAS  Google Scholar 

  • Lehmann J, Schaefer P, Ferkany JW, Coyle JT (1983) Quinolinic acid evokes [3H]acetylcholine release in striatal slices: mediation by NMDA-type excitatory amino acid receptors. Eur J Pharmacol 96:111–115

    PubMed  CAS  Google Scholar 

  • Leone C, Le Pavec G, Meme W, Porcheray F, Samah B, Dormont D, Gras G (2006) Characterization of human monocyte-derived microglia-like cells. Glia 54:183–192

    PubMed  Google Scholar 

  • Liu Y, Hao W, Letiembre M, Walter S, Kulanga M, Neumann H, Fassbender K (2006) Suppression of microglial inflammatory activity by myelin phagocytosis: role of p47-PHOX-mediated generation of reactive oxygen species. J Neurosci 26:12904–12913

    PubMed  CAS  Google Scholar 

  • Loane DJ, Stoica BA, Pajoohesh-Ganji A, Byrnes KR, Faden AI (2009) Activation of metabotropic glutamate receptor 5 modulates microglial reactivity and neurotoxicity by inhibiting NADPH oxidase. J Biol Chem 284:15629–15639

    PubMed  CAS  Google Scholar 

  • Lopez-Redondo F, Nakajima K, Honda S, Kohsaka S (2000) Glutamate transporter GLT-1 is highly expressed in activated microglia following facial nerve axotomy. Brain Res Mol Brain Res 76:429–435

    PubMed  CAS  Google Scholar 

  • Magnus T, Chan A, Grauer O, Toyka KV, Gold R (2001) Microglial phagocytosis of apoptotic inflammatory T cells leads to down-regulation of microglial immune activation. J Immunol 167:5004–5010

    PubMed  CAS  Google Scholar 

  • Martinez-Hernandez A, Bell KP, Norenberg MD (1977) Glutamine synthetase: glial localization in brain. Science 195:1356–1358

    PubMed  CAS  Google Scholar 

  • Meisner F, Neuen-Jacob E, Sopper S, Schmidt M, Schlammes S, Scheller C, Vosswinkel D, Ter Meulen V, Riederer P, Koutsilieri E (2008) Disruption of excitatory amino acid transporters in brains of SIV-infected rhesus macaques is associated with microglia activation. J Neurochem 104:202–209

    PubMed  CAS  Google Scholar 

  • Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318

    PubMed  CAS  Google Scholar 

  • Norenberg MD (1979) Distribution of glutamine synthetase in the rat central nervous system. J Histochem Cytochem 27:756–762

    PubMed  CAS  Google Scholar 

  • Norenberg MD, Martinez-Hernandez A (1979) Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res 161:303–310

    PubMed  CAS  Google Scholar 

  • O’Shea RD, Lau CL, Farso MC, Diwakarla S, Zagami CJ, Svendsen BB, Feeney SJ, Callaway JK, Jones NM, Pow DV, Danbolt NC, Jarrott B, Beart PM (2006) Effects of lipopolysaccharide on glial phenotype and activity of glutamate transporters: evidence for delayed up-regulation and redistribution of GLT-1. Neurochem Int 48:604–610

    PubMed  Google Scholar 

  • Okada K, Yamashita U, Tsuji S (2005) Modulation of Na(+)-dependent glutamate transporter of murine astrocytes by inflammatory mediators. J Uoeh 27:161–170

    PubMed  CAS  Google Scholar 

  • Ottersen OP, Zhang N, Walberg F (1992) Metabolic compartmentation of glutamate and glutamine: morphological evidence obtained by quantitative immunocytochemistry in rat cerebellum. Neuroscience 46:519–534

    PubMed  CAS  Google Scholar 

  • Patton HK, Zhou ZH, Bubien JK, Benveniste EN, Benos DJ (2000) gp120-induced alterations of human astrocyte function: Na(+)/H(+) exchange, K(+) conductance, and glutamate flux. Am J Physiol Cell Physiol 279:C700–C708

    PubMed  CAS  Google Scholar 

  • Perry VH, Hume DA, Gordon S (1985) Immunohistochemical localization of macrophages and microglia in the adult and developing mouse brain. Neuroscience 15:313–326

    PubMed  CAS  Google Scholar 

  • Persson M, Brantefjord M, Hansson E, Ronnback L (2005) Lipopolysaccharide increases microglial GLT-1 expression and glutamate uptake capacity in vitro by a mechanism dependent on TNF-alpha. Glia 51:111–120

    PubMed  Google Scholar 

  • Persson J, Gardestrom P, Nasholm T (2006) Uptake, metabolism and distribution of organic and inorganic nitrogen sources by Pinus sylvestris. J Exp Bot 57:2651–2659

    PubMed  CAS  Google Scholar 

  • Persson M, Brantefjord M, Liljeqvist JA, Bergstrom T, Hansson E, Ronnback L (2007) Microglial GLT-1 is upregulated in response to herpes simplex virus infection to provide an antiviral defence via glutathione. Glia 55:1449–1458

    PubMed  Google Scholar 

  • Pines G, Danbolt NC, Bjoras M, Zhang Y, Bendahan A, Eide L, Koepsell H, Storm-Mathisen J, Seeberg E, Kanner BI (1992) Cloning and expression of a rat brain l-glutamate transporter. Nature 360:464–467

    PubMed  CAS  Google Scholar 

  • Pocock JM, Kettenmann H (2007) Neurotransmitter receptors on microglia. Trends Neurosci 30:527–535

    PubMed  CAS  Google Scholar 

  • Ponomarev ED, Maresz K, Tan Y, Dittel BN (2007) CNS-derived interleukin-4 is essential for the regulation of autoimmune inflammation and induces a state of alternative activation in microglial cells. J Neurosci 27:10714–10721

    PubMed  CAS  Google Scholar 

  • Porcheray F, Viaud S, Rimaniol AC, Leone C, Samah B, Dereuddre-Bosquet N, Dormont D, Gras G (2005) Macrophage activation switching: an asset for the resolution of inflammation. Clin Exp Immunol 142:481–489

    PubMed  CAS  Google Scholar 

  • Porcheray F, Leone C, Samah B, Rimaniol A-C, Dereuddre-Bosquet N and Gras G (2006) Glutamate metabolism in HIV-infected macrophages: implications for the CNS. Am J Physiol Cell Physiol 291

  • Raivich G (2005) Like cops on the beat: the active role of resting microglia. Trends Neurosci 28:571–573

    PubMed  CAS  Google Scholar 

  • Ransohoff RM, Perry VH (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27:119–145

    PubMed  CAS  Google Scholar 

  • Reichelt W, Stabel-Burow J, Pannicke T, Weichert H, Heinemann U (1997) The glutathione level of retinal Muller glial cells is dependent on the high-affinity sodium-dependent uptake of glutamate. Neuroscience 77:1213–1224

    PubMed  CAS  Google Scholar 

  • Riepe RE, Norenburg MD (1977) Muller cell localisation of glutamine synthetase in rat retina. Nature 268:654–655

    PubMed  CAS  Google Scholar 

  • Rimaniol AC, Haik S, Martin M, Le Grand R, Boussin FD, Dereuddre-Bosquet N, Gras G, Dormont D (2000) Na+-dependent high-affinity glutamate transport in macrophages. J Immunol 164:5430–5438

    PubMed  CAS  Google Scholar 

  • Rimaniol AC, Mialocq P, Clayette P, Dormont D, Gras G (2001) Role of glutamate transporters in the regulation of glutathione levels in human macrophages. Am J Physiol Cell Physiol 281:C1964–C1970

    PubMed  CAS  Google Scholar 

  • Rosenstiel P, Lucius R, Deuschl G, Sievers J, Wilms H (2001) From theory to therapy: implications from an in vitro model of ramified microglia. Microsc Res Tech 54:18–25

    PubMed  CAS  Google Scholar 

  • Rothman S (1984) Synaptic release of excitatory amino acid neurotransmitter mediates anoxic neuronal death. J Neurosci 4:1884–1891

    PubMed  CAS  Google Scholar 

  • Rothman SM (1985) The neurotoxicity of excitatory amino acids is produced by passive chloride influx. J Neurosci 5:1483–1489

    PubMed  CAS  Google Scholar 

  • Rothstein JD, Martin L, Levey AI, Dykes-Hoberg M, Jin L, Wu D, Nash N, Kuncl RW (1994) Localization of neuronal and glial glutamate transporters. Neuron 13:713–725

    PubMed  CAS  Google Scholar 

  • Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, Kanai Y, Hediger MA, Wang Y, Schielke JP, Welty DF (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16:675–686

    PubMed  CAS  Google Scholar 

  • Rozyczka J, Figiel M, Engele J (2004) Endothelins negatively regulate glial glutamate transporter expression. Brain Pathol 14:406–414

    PubMed  CAS  Google Scholar 

  • Schmidtmayer J, Jacobsen C, Miksch G, Sievers J (1994) Blood monocytes and spleen macrophages differentiate into microglia-like cells on monolayers of astrocytes: membrane currents. Glia 12:259–267

    PubMed  CAS  Google Scholar 

  • Shaked I, Tchoresh D, Gersner R, Meiri G, Mordechai S, Xiao X, Hart RP, Schwartz M (2005) Protective autoimmunity: interferon-gamma enables microglia to remove glutamate without evoking inflammatory mediators. J Neurochem 92:997–1009

    PubMed  CAS  Google Scholar 

  • Sierra A, Gottfried-Blackmore A, Milner TA, McEwen BS, Bulloch K (2008) Steroid hormone receptor expression and function in microglia. Glia 56:659–674

    PubMed  Google Scholar 

  • Sievers J, Parwaresch R, Wottge HU (1994) Blood monocytes and spleen macrophages differentiate into microglia-like cells on monolayers of astrocytes: morphology. Glia 12:245–258

    PubMed  CAS  Google Scholar 

  • Sitcheran R, Gupta P, Fisher PB, Baldwin AS (2005) Positive and negative regulation of EAAT2 by NF-kappaB: a role for N-myc in TNFalpha-controlled repression. EMBO J 24:510–520

    PubMed  CAS  Google Scholar 

  • Stein M, Keshav S, Harris N, Gordon S (1992) Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med 176:287–292

    PubMed  CAS  Google Scholar 

  • Storck T, Schulte S, Hofmann K, Stoffel W (1992) Structure, expression, and functional analysis of a Na(+)-dependent glutamate/aspartate transporter from rat brain. Proc Natl Acad Sci USA 89:10955–10959

    PubMed  CAS  Google Scholar 

  • Tacke F, Randolph GJ (2006) Migratory fate and differentiation of blood monocyte subsets. Immunobiology 211:609–618

    PubMed  CAS  Google Scholar 

  • Takahashi K, Prinz M, Stagi M, Chechneva O, Neumann H (2007) TREM2-transduced myeloid precursors mediate nervous tissue debris clearance and facilitate recovery in an animal model of multiple sclerosis. PLoS Med 4:e124

    PubMed  Google Scholar 

  • Takamori S, Rhee JS, Rosenmund C, Jahn R (2000) Identification of a vesicular glutamate transporter that defines a glutamatergic phenotype in neurons. Nature 407:189–194

    PubMed  CAS  Google Scholar 

  • Tanaka K (1993) Expression cloning of a rat glutamate transporter. Neurosci Res 16:149–153

    PubMed  CAS  Google Scholar 

  • Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Takahashi K, Iwama H, Nishikawa T, Ichihara N, Kikuchi T, Okuyama S, Kawashima N, Hori S, Takimoto M, Wada K (1997) Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276:1699–1702

    PubMed  CAS  Google Scholar 

  • Taylor DL, Diemel LT, Pocock JM (2003) Activation of microglial group III metabotropic glutamate receptors protects neurons against microglial neurotoxicity. J Neurosci 23:2150–2160

    PubMed  CAS  Google Scholar 

  • Vallat-Decouvelaere AV, Chretien F, Gras G, Le Pavec G, Dormont D, Gray F (2003) Expression of excitatory amino acid transporter-1 in brain macrophages and microglia of HIV-infected patients. A neuroprotective role for activated microglia? J Neuropathol Exp Neurol 62:475–485

    PubMed  CAS  Google Scholar 

  • van Beek EM, Cochrane F, Barclay AN, van den Berg TK (2005) Signal regulatory proteins in the immune system. J Immunol 175:7781–7787

    PubMed  Google Scholar 

  • van Landeghem FK, Stover JF, Bechmann I, Bruck W, Unterberg A, Buhrer C, von Deimling A (2001) Early expression of glutamate transporter proteins in ramified microglia after controlled cortical impact injury in the rat. Glia 35:167–179

    PubMed  Google Scholar 

  • Varoqui H, Zhu H, Yao D, Ming H, Erickson JD (2000) Cloning and functional identification of a neuronal glutamine transporter. J Biol Chem 275:4049–4054

    PubMed  CAS  Google Scholar 

  • Vermeiren C, Najimi M, Vanhoutte N, Tilleux S, de Hemptinne I, Maloteaux JM, Hermans E (2005) Acute up-regulation of glutamate uptake mediated by mGluR5a in reactive astrocytes. J Neurochem 94:405–416

    PubMed  CAS  Google Scholar 

  • Vesce S, Bezzi P, Rossi D, Meldolesi J, Volterra A (1997) HIV-1 gp120 glycoprotein affects the astrocyte control of extracellular glutamate by both inhibiting the uptake and stimulating the release of the amino acid. FEBS Lett 411:107–109

    PubMed  CAS  Google Scholar 

  • Voutsinos-Porche B, Bonvento G, Tanaka K, Steiner P, Welker E, Chatton JY, Magistretti PJ, Pellerin L (2003) Glial glutamate transporters mediate a functional metabolic crosstalk between neurons and astrocytes in the mouse developing cortex. Neuron 37:275–286

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Agency for Research against AIDS and Viral Hepatitis (ANRS) and the Fondation pour la Recherche Médicale (FRM), as well as funding by the Atomic Energy Commission (CEA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Gras.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gras, G., Samah, B., Hubert, A. et al. EAAT expression by macrophages and microglia: still more questions than answers. Amino Acids 42, 221–229 (2012). https://doi.org/10.1007/s00726-011-0866-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-0866-6

Keywords

Navigation