Skip to main content

Advertisement

Log in

Analysis of oligo-arginine cell-permeable peptides uptake by prostate cells

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Recently, we have shown that oligo-arginine peptide (i.e., R11), a unique cell-permeable peptide (CPP), can be used as an imaging probe for prostate cancer detection. In this study, the mechanism(s) of oligo-arginine peptide in prostate cells was further analyzed. The length of the oligo-arginine peptide appears to be critical for the efficiency of uptake by prostate cells: poly (11)-arginine (R11) > poly (9)-arginine (R9) > poly (13)-arginine peptide (R13). The uptake of R11 peptide by prostate cells is mediated by macropinocytosis as evidenced by the fact that uptake can be blocked by a macropinocytosis inhibitor. However, the use of an inhibitor for carbohydrate chain elongation of glycosaminoglycan or inhibitors for carbohydrate synthesis of glycoprotein via either O-link or N-link showed minimal effects on R11 uptake. Nevertheless, pentosan sulfate (PentS) or dextran sulfate (DS) exhibited the highest inhibitory effect on R11 uptake in several prostate cells treated with various soluble glycosaminoglycans (GAGs) or anionic polymers. It is known that laminin receptor has been characterized as a PentS binding partner. Knocking down 37LRP (laminin receptor precursor) expression in prostate cells showed a reduction in their ability to uptake R11 peptides. In conclusion, laminin receptor is one of the initial binding site(s) responsible for R11 peptide uptake in prostate cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Annabi B, Currie JC, Bouzeghrane M, Dulude H, Daigneault L, Garde S, Rabbani SA, Panchal C, Wu JJ, Beliveau R (2006) Contribution of the 37-kDa laminin receptor precursor in the anti-metastatic PSP94-derived peptide PCK3145 cell surface binding. Biochem Biophys Res Commun 346(1):358–366

    Article  PubMed  CAS  Google Scholar 

  • Deshpande PB et al (2008) Process for the preparation of pentosan polysulfate or salts thereof. In: W.I.P. Organization (ed) India, p 23

  • Drin G, Cottin S, Blanc E, Rees AR, Temsamani J (2003) Studies on the internalization mechanism of cationic cell-penetrating peptides. J Biol Chem 278(33):31192–31201

    Article  PubMed  CAS  Google Scholar 

  • Frankel AD, Pabo CO (1988) Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55(6):1189–1193

    Article  PubMed  CAS  Google Scholar 

  • Fretz MM, Penning NA, Al-Taei S, Futaki S, Takeuchi T, Nakase I, Storm G, Jones AT (2007) Temperature-, concentration- and cholesterol-dependent translocation of l- and d-octa-arginine across the plasma and nuclear membrane of CD34+ leukaemia cells. Biochem J 403(2):335–342

    Article  PubMed  CAS  Google Scholar 

  • Futaki S, Nakase I, Tadokoro A, Takeuchi T, Jones AT (2007) Arginine-rich peptides and their internalization mechanisms. Biochem Soc Trans 35(Pt 4):784–787

    PubMed  CAS  Google Scholar 

  • Gala FA, Morrison SL (2002) The role of constant region carbohydrate in the assembly and secretion of human IgD and IgA1. J Biol Chem 277(32):29005–29011

    Article  PubMed  CAS  Google Scholar 

  • Gauczynski S, Peyrin JM, Haik S, Leucht C, Hundt C, Rieger R, Krasemann S, Deslys JP, Dormont D, Lasmezas CI, Weiss S (2001) The 37-kDa/67-kDa laminin receptor acts as the cell-surface receptor for the cellular prion protein. EMBO J 20(21):5863–5875

    Article  PubMed  CAS  Google Scholar 

  • Hao G, Zhou J, Gao Y, Long MA, Anthony T, Stanfield J, Hsieh JT, Sun X (2010) A cell permeable peptide analog as a potential specific PET imaging probe for prostate cancer detection. Amino Acids. doi:10.1007/s00726-010-0515-5

  • Joliot A, Pernelle C, Deagostini-Bazin H, Prochiantz A (1991) Antennapedia homeobox peptide regulates neural morphogenesis. Proc Natl Acad Sci USA 88(5):1864–1868

    Article  PubMed  CAS  Google Scholar 

  • Keller KE, Bradley JM, Kelley MJ, Acott TS (2008) Effects of modifiers of glycosaminoglycan biosynthesis on outflow facility in perfusion culture. Invest Ophthalmol Vis Sci 49(6):2495–2505

    Article  PubMed  Google Scholar 

  • Kim KJ, Chung JW, Kim KS (2005) 67-kDa laminin receptor promotes internalization of cytotoxic necrotizing factor 1-expressing Escherichia coli K1 into human brain microvascular endothelial cells. J Biol Chem 280(2):1360–1368

    Article  PubMed  CAS  Google Scholar 

  • Malecki J, Wesche J, Skjerpen CS, Wiedlocha A, Olsnes S (2004) Translocation of FGF-1 and FGF-2 across vesicular membranes occurs during G1-phase by a common mechanism. Mol Biol Cell 15(2):801–814

    Article  PubMed  CAS  Google Scholar 

  • Mitchell DJ, Kim DT, Steinman L, Fathman CG, Rothbard JB (2000) Polyarginine enters cells more efficiently than other polycationic homopolymers. J Pept Res 56(5):318–325

    Article  PubMed  CAS  Google Scholar 

  • Nakase I, Tadokoro A, Kawabata N, Takeuchi T, Katoh H, Hiramoto K, Negishi M, Nomizu M, Sugiura Y, Futaki S (2007) Interaction of arginine-rich peptides with membrane-associated proteoglycans is crucial for induction of actin organization and macropinocytosis. Biochemistry 46(2):492–501

    Article  PubMed  CAS  Google Scholar 

  • Nelson J, McFerran NV, Pivato G, Chambers E, Doherty C, Steele D, Timson DJ (2008) The 67 kDa laminin receptor: structure, function and role in disease. Biosci Rep 28(1):33–48

    Article  PubMed  CAS  Google Scholar 

  • Richard JP, Melikov K, Vives E, Ramos C, Verbeure B, Gait MJ, Chernomordik LV, Lebleu B (2003) Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J Biol Chem 278(1):585–590

    Article  PubMed  CAS  Google Scholar 

  • Richard JP, Melikov K, Brooks H, Prevot P, Lebleu B, Chernomordik LV (2005) Cellular uptake of unconjugated TAT peptide involves clathrin-dependent endocytosis and heparan sulfate receptors. J Biol Chem 280(15):15300–15306

    Article  PubMed  CAS  Google Scholar 

  • Rieger R, Edenhofer F, Lasmezas CI, Weiss S (1997) The human 37-kDa laminin receptor precursor interacts with the prion protein in eukaryotic cells. Nat Med 3(12):1383–1388

    Article  PubMed  CAS  Google Scholar 

  • Thoren PE, Persson D, Karlsson M, Norden B (2000) The Antennapedia peptide penetratin translocates across lipid bilayers—the first direct observation. FEBS Lett. 482(3):265–268

    Article  PubMed  CAS  Google Scholar 

  • Tio PH, Jong WW, Cardosa MJ (2005) Two dimensional VOPBA reveals laminin receptor (LAMR1) interaction with dengue virus serotypes 1, 2 and 3. Virol J 2:25

    Article  PubMed  Google Scholar 

  • Tyagi M, Rusnati M, Presta M, Giacca M (2001) Internalization of HIV-1 Tat requires cell surface heparan sulfate proteoglycans. J Biol Chem 276(5):3254–3261

    Article  PubMed  CAS  Google Scholar 

  • Vana K, Zuber C, Pflanz H, Kolodziejczak D, Zemora G, Bergmann AK, Weiss S (2009) LRP/LR as an alternative promising target in therapy of prion diseases, Alzheimer’s disease and cancer. Infect Disord Drug Targets 9(1):69–80

    PubMed  CAS  Google Scholar 

  • Vendeville A, Rayne F, Bonhoure A, Bettache N, Montcourrier P, Beaumelle B (2004) HIV-1 Tat enters T cells using coated pits before translocating from acidified endosomes and eliciting biological responses. Mol Biol Cell 15(5):2347–2360

    Article  PubMed  CAS  Google Scholar 

  • Wang KS, Kuhn RJ, Strauss EG, Ou S, Strauss JH (1992) High-affinity laminin receptor is a receptor for Sindbis virus in mammalian cells. J Virol 66(8):4992–5001

    PubMed  CAS  Google Scholar 

  • Wender PA, Mitchell DJ, Pattabiraman K, Pelkey ET, Steinman L, Rothbard JB (2000) The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc Natl Acad Sci USA 97(24):13003–13008

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Hernandez G, Tu SW, Huang CL, Tseng CP, Hsieh JT (2005) The mechanism of antiandrogen effect of DOC-2/DAB2 on androgen receptor-mediated cell growth in androgen independent prostate cancer. Cancer Res 65(21):9906–9913

    Article  Google Scholar 

  • Zhou J, Fan J, Hsieh JT (2006) Inhibition of mitogens-elicited signal transduction and growth in prostate cancer with a small peptide derived from the functional domain of DOC-2/DAB2 delivered by a unique vehicle. Cancer Res 66(18):8954–8958

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ms. Crystal Gore for the editorial assistance. This work was partially supported by the Prostate Cancer Research Program of the United States Army Medical Research and Materiel Command (W81XWH-08-1-0305 and W81XWH-04-1-0222) and a Clinical Innovator Award from the Flight Attendant Medical Research Institute. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jer-Tsong Hsieh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (DOC 54 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, J., Liu, W., Pong, RC. et al. Analysis of oligo-arginine cell-permeable peptides uptake by prostate cells. Amino Acids 42, 1253–1260 (2012). https://doi.org/10.1007/s00726-010-0817-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0817-7

Keywords

Navigation