Advertisement

Amino Acids

, Volume 41, Issue 4, pp 901–908 | Cite as

Taurine prevents fat deposition and ameliorates plasma lipid profile in monosodium glutamate-obese rats

  • Tarlliza Romanna Nardelli
  • Rosane Aparecida RibeiroEmail author
  • Sandra Lucinei Balbo
  • Emerielle Cristine Vanzela
  • Everardo Magalhães Carneiro
  • Antonio Carlos Boschero
  • Maria Lúcia Bonfleur
Original Article

Abstract

The aim of the present study was to evaluate the preventive effects of taurine (TAU) supplementation upon monosodium glutamate (MSG)-induced obesity. Rats treated during the first 5 days of life with MSG or saline were distributed into the following groups: control (CTL), CTL-treated with TAU (CTAU), MSG and MSG-supplemented with TAU (MTAU). CTAU and MTAU received 2.5% of TAU in their drinking water from 21 to 90 days of life. At the end of treatment, MSG and MTAU rats were hyperinsulinemic, glucose intolerant and insulin resistant, as judged by the HOMA index. MSG and MTAU rat islets secreted more insulin at 16.7 mM glucose compared to CTL. MSG rats also showed higher triglycerides (TG) and non-esterified fatty acids (NEFA) plasma levels, Lee Index, retroperitoneal and periepidydimal fat pads, compared with CTL, whereas plasma lipid concentrations and fat depots were lower in MTAU, compared with MSG rats. In addition, MSG rats had a higher liver TG content compared with CTL. TAU decreased liver TG content in both supplemented groups, but fat content only in MTAU rats. TAU supplementation did not change glucose homeostasis, insulin secretion and action, but reduced plasma and liver lipid levels in MSG rats.

Keywords

NEFA MSG Obesity TG Taurine supplementation 

Abbreviations

apoB

Apolipoprotein B100

CHOL

Cholesterol

CTL

Control

CTAU

Control rats supplemented with TAU

HOMA-IR

Homeostasis model assessment of insulin resistance

ipGTT

Intraperitoneal glucose tolerance test

LDL

Low-density lipoprotein

MSG

Monosodium glutamate

MTAU

MSG rats supplemented with TAU

NEFA

Non-esterified fatty acids

TAU

Taurine

TG

Triglyceride

VLDL

Very low-density lipoprotein

Notes

Acknowledgments

This study was supported by grants from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP); Conselho Nacional para o Desenvolvimento Científico e Tecnológico (CNPq); Instituto Nacional de Obesidade e Diabetes (CNPq/FAPESP) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). We are grateful to Nicola Conran for editing the English.

References

  1. Anuradha CV, Balakrishnan SD (1999) Taurine attenuates hypertension and improves insulin sensitivity in the fructose-fed rat: an animal model of insulin resistance. Can J Physiol Pharmacol 77:749–754PubMedCrossRefGoogle Scholar
  2. Balbo SL, Mathias PC, Bonfleur ML, Alves HF, Siroti FJ, Monteiro OG, Ribeiro FB, Souza AC (2000) Vagotomy reduces obesity in MSG-treated rats. Res Commun Mol Pathol Pharmacol 108:291–296PubMedGoogle Scholar
  3. Balbo SL, Grassiolli S, Ribeiro RA, Bonfleur ML, Gravena C, Brito Mdo N, Andreazzi AE, Mathias PC, Torrezan R (2007) Fat storage is partially dependent on vagal activity and insulin secretion of hypothalamic obese rat. Endocrine 31:142–148PubMedCrossRefGoogle Scholar
  4. Bernardis LL, Patterson BD (1968) Correlation between ‘Lee index’ and carcass fat content in weanling and adult female rats with hypothalamic lesions. J Endocrinol 40:527–528PubMedCrossRefGoogle Scholar
  5. Bonora E, Targher G, Alberiche M, Bonadonna RC, Saggiani F, Zenere MB, Monauni T, Muggeo M (2000) Homeostasis model assessment closely mirrors the glucose clamp technique in the assessment of insulin sensitivity: studies in subjects with various degrees of glucose tolerance and insulin sensitivity. Diabetes Care 23:57–63PubMedCrossRefGoogle Scholar
  6. Boujendar S, Reusens B, Merezak S, Ahn MT, Arany E, Hill D, Remacle C (2002) Taurine supplementation to a low protein diet during foetal and early postnatal life restores a normal proliferation and apoptosis of rat pancreatic islets. Diabetologia 45:856–866PubMedCrossRefGoogle Scholar
  7. Carneiro EM, Latorraca MQ, Araujo E, Beltra M, Oliveras MJ, Navarro M, Berna G, Bedoya FJ, Velloso LA, Soria B, Martin F (2009) Taurine supplementation modulates glucose homeostasis and islet function. J Nutr Biochem 20:503–511PubMedCrossRefGoogle Scholar
  8. Chen W, Matuda K, Nishimura N, Yokogoshi H (2004) The effect of taurine on cholesterol degradation in mice fed a high-cholesterol diet. Life Sci 74:1889–1898PubMedCrossRefGoogle Scholar
  9. Cherif H, Reusens B, Dahri S, Remacle C, Hoet JJ (1996) Stimulatory effects of taurine on insulin secretion by fetal rat islets cultured in vitro. J Endocrinol 151:501–506PubMedCrossRefGoogle Scholar
  10. Cherif H, Reusens B, Ahn MT, Hoet JJ, Remacle C (1998) Effects of taurine on the insulin secretion of rat fetal islets from dams fed a low-protein diet. J Endocrinol 159:341–348PubMedCrossRefGoogle Scholar
  11. Choi MJ, Kim JH, Chang KJ (2006) The effect of dietary taurine supplementation on plasma and liver lipid concentrations and free amino acid concentrations in rats fed a high-cholesterol diet. Adv Exp Med Biol 583:235–242PubMedCrossRefGoogle Scholar
  12. Dashti N (1992) The effect of low density lipoproteins, cholesterol, and 25-hydroxycholesterol on apolipoprotein B gene expression in HepG2 cells. J Biol Chem 267:7160–7169PubMedGoogle Scholar
  13. Dawson R Jr (1983) Acute and long lasting neurochemical effects of monosodium glutamate administration to mice. Neuropharmacology 22:1417–1419PubMedCrossRefGoogle Scholar
  14. Duivenvoorden I, Teusink B, Rensen PC, Romijn JA, Havekes LM, Voshol PJ (2005) Apolipoprotein C3 deficiency results in diet-induced obesity and aggravated insulin resistance in mice. Diabetes 54:664–671PubMedCrossRefGoogle Scholar
  15. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509PubMedGoogle Scholar
  16. Huxtable RJ (1992) Physiological actions of taurine. Physiol Rev 72:101–163PubMedGoogle Scholar
  17. Kahn SE, Prigeon RL, Schwartz RS, Fujimoto WY, Knopp RH, Brunzell JD, D Porte Jr (2001) Obesity, body fat distribution, insulin sensitivity and islet beta-cell function as explanations for metabolic diversity. J Nutr 131:354S–360SPubMedGoogle Scholar
  18. Kaniuk NA, Kiraly M, Bates H, Vranic M, Volchuk A, Brumell JH (2007) Ubiquitinated-protein aggregates form in pancreatic beta-cells during diabetes-induced oxidative stress and are regulated by autophagy. Diabetes 56:930–939PubMedCrossRefGoogle Scholar
  19. Kaplan B, Karabay G, Zagyapan RD, Ozer C, Sayan H, Duyar I (2004) Effects of taurine in glucose and taurine administration. Amino Acids 27:327–333PubMedCrossRefGoogle Scholar
  20. Kulakowski EC, Maturo J (1984) Hypoglycemic properties of taurine: not mediated by enhanced insulin release. Biochem Pharmacol 33:2835–2838PubMedCrossRefGoogle Scholar
  21. Macho L, Fickova M, Jezova Zorad S (2000) Late effects of postnatal administration of monosodium glutamate on insulin action in adult rats. Physiol Res 49(Suppl 1):S79–S85PubMedGoogle Scholar
  22. Martins AC, Souza KL, Shio MT, Mathias PC, Lelkes PI, Garcia RM (2004) Adrenal medullary function and expression of catecholamine-synthesizing enzymes in mice with hypothalamic obesity. Life Sci 74:3211–3222PubMedCrossRefGoogle Scholar
  23. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419PubMedCrossRefGoogle Scholar
  24. Maturo J, Kulakowski EC (1988) Taurine binding to the purified insulin receptor. Biochem Pharmacol 37:3755–3760PubMedCrossRefGoogle Scholar
  25. Mizushima S, Nara Y, Sawamura M, Yamori Y (1996) Effects of oral taurine supplementation on lipids and sympathetic nerve tone. Adv Exp Med Biol 403:615–622PubMedGoogle Scholar
  26. Murakami S, Kondo Y, Nagate T (2000) Effects of long-term treatment with taurine in mice fed a high-fat diet: improvement in cholesterol metabolism and vascular lipid accumulation by taurine. Adv Exp Med Biol 483:177–186PubMedCrossRefGoogle Scholar
  27. Murakami S, Kondo Y, Toda Y, Kitajima H, Kameo K, Sakono M, Fukuda N (2002) Effect of taurine on cholesterol metabolism in hamsters: up-regulation of low density lipoprotein (LDL) receptor by taurine. Life Sci 70:2355–2366PubMedCrossRefGoogle Scholar
  28. Nakaya Y, Minami A, Harada N, Sakamoto S, Niwa Y, Ohnaka M (2000) Taurine improves insulin sensitivity in the Otsuka Long-Evans Tokushima Fatty rat, a model of spontaneous type 2 diabetes. Am J Clin Nutr 71:54–58PubMedGoogle Scholar
  29. Nandhini AT, Thirunavukkarasu V, Anuradha CV (2005) Taurine modifies insulin signaling enzymes in the fructose-fed insulin resistant rats. Diabetes Metab 31:337–344PubMedCrossRefGoogle Scholar
  30. Nishimura N, Umeda C, Ona H, Yokogoshi H (2002) The effect of taurine on plasma cholesterol concentration in genetic type 2 diabetic GK rats. J Nutr Sci Vitaminol (Tokyo) 48:483–490CrossRefGoogle Scholar
  31. Olney JW (1969) Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science 164:719–721PubMedCrossRefGoogle Scholar
  32. Olney JW (1971) Glutamate-induced neuronal necrosis in the infant mouse hypothalamus. An electron microscopic study. J Neuropathol Exp Neurol 30:75–90PubMedCrossRefGoogle Scholar
  33. Olofsson SO, Boren J (2005) Apolipoprotein B: a clinically important apolipoprotein which assembles atherogenic lipoproteins and promotes the development of atherosclerosis. J Intern Med 258:395–410PubMedCrossRefGoogle Scholar
  34. Ribeiro RA, Bonfleur ML, Amaral AG, Vanzela EC, Rocco SA, Boschero AC, Carneiro EM (2009) Taurine supplementation enhances nutrient-induced insulin secretion in pancreatic mice islets. Diabetes Metab Res Rev 25:370–379PubMedCrossRefGoogle Scholar
  35. Ribeiro RA, Vanzela EC, Oliveira CA, Bonfleur ML, Boschero AC, Carneiro EM (2010) Taurine supplementation: involvement of cholinergic/phospholipase C and protein kinase A pathways in potentiation of insulin secretion and Ca2+ handling in mouse pancreatic islets. Br J Nutr 104(8):1148–1155PubMedCrossRefGoogle Scholar
  36. Tas S, Sarandol E, Ayvalik SZ, Serdar Z, Dirican M (2007) Vanadyl sulfate, taurine, and combined vanadyl sulfate and taurine treatments in diabetic rats: effects on the oxidative and antioxidative systems. Arch Med Res 38:276–283PubMedCrossRefGoogle Scholar
  37. Tsuboyama-Kasaoka N, Shozawa C, Sano K, Kamei Y, Kasaoka S, Hosokawa Y, Ezaki O (2006) Taurine (2-aminoethanesulfonic acid) deficiency creates a vicious circle promoting obesity. Endocrinology 147:3276–3284PubMedCrossRefGoogle Scholar
  38. Xiao C, Giacca A, Lewis GF (2008) Oral taurine but not N-acetylcysteine ameliorates NEFA-induced impairment in insulin sensitivity and beta cell function in obese and overweight, non-diabetic men. Diabetologia 51:139–146PubMedCrossRefGoogle Scholar
  39. Yanagita T, Han SY, Hu Y, Nagao K, Kitajima H, Murakami S (2008) Taurine reduces the secretion of apolipoprotein B100 and lipids in HepG2 cells. Lipids Health Dis 7:38PubMedCrossRefGoogle Scholar
  40. Zhang M, Bi LF, Fang JH, Su XL, Da GL, Kuwamori T, Kagamimori S (2004) Beneficial effects of taurine on serum lipids in overweight or obese non-diabetic subjects. Amino Acids 26:267–271PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Tarlliza Romanna Nardelli
    • 1
  • Rosane Aparecida Ribeiro
    • 2
    Email author
  • Sandra Lucinei Balbo
    • 1
  • Emerielle Cristine Vanzela
    • 2
  • Everardo Magalhães Carneiro
    • 2
  • Antonio Carlos Boschero
    • 2
  • Maria Lúcia Bonfleur
    • 1
  1. 1.Centro de Ciências Biológicas e da SaúdeUniversidade Estadual do Oeste do Paraná (UNIOESTE)CascavelBrazil
  2. 2.Departamento de Anatomia, Biologia Celular e Fisiologia e Biofísica, Instituto de BiologiaUniversidade Estadual de Campinas (UNICAMP)CampinasBrazil

Personalised recommendations