Skip to main content

Advertisement

Log in

Physiological relevance of dietary melanoidins

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Melanoidins are the final products of the Maillard reaction. The main dietary sources of melanoidins are coffee, bread crust, bakery products, black beer and cocoa. Although the chemical structures of melanoidins are widely unknown, data from gravimetric techniques allow to roughly estimate a daily intake in the order of 10 g with a Western diet. Melanoidins contribute to the sensorial properties, modulating texture and flavour of foods. Growing evidence also suggests that melanoidins have health beneficial properties, such as chemopreventive, antioxidant and antimicrobial activities, and the ability to chelate different minerals. In the gastrointestinal tract, melanoidins behave not only as antioxidants, but also as dietary fibre by promoting the growth of bifidobacteria. This array of biological activities suggests the need for analytical techniques to identify the melanoidin structures and to control their formation during thermal food processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Açar O, Gökmen V, Pellegrini N, Fogliano V (2009) Direct evaluation of the total antioxidant capacity of raw and roasted pulses, nuts and seeds. Eur J Food Sci Technol 229:961–969

    Google Scholar 

  • Adams A, Borrelli RC, Fogliano V, De Kimpe N (2005) Comparative characterization of food melanoidins. J Agric Food Chem 53:4136–4142

    PubMed  CAS  Google Scholar 

  • Ames JM, Wynne A, Hofmann A, Plos S, Gibson GR (1999) The effect of a model melanoidin mixture on faecal bacterial populations in vitro. Br J Nutr 82:489–495

    PubMed  CAS  Google Scholar 

  • Anese M, Nicoli MC (2003) Antioxidant properties of ready-to-drink coffee brews. J Agric Food Chem 51:942–946

    PubMed  CAS  Google Scholar 

  • Babbs CF (1990) Free radicals and the etiology of colon cancer. Free Radic Biol Med 8:191–200

    PubMed  CAS  Google Scholar 

  • Bekedam EK, Schols HA, van Boekel MA, Smit G (2006) High molecular weight melanoidins from coffee brew. J Agric Food Chem 54:7658–7666

    PubMed  CAS  Google Scholar 

  • Bekedam EK, De Laat MP, Schols HA, Van Boekel MA, Smit G (2007) Arabinogalactan proteins are incorporated in negatively charged coffee brew melanoidins. J Agric Food Chem 55:761–768

    PubMed  CAS  Google Scholar 

  • Bekedam EK, Loots MJ, Schols HA, Van Boekel MA, Smit G (2008a) Roasting effects on formation mechanisms of coffee brew melanoidins. J Agric Food Chem 56:7138–7145

    PubMed  CAS  Google Scholar 

  • Bekedam EK, Roos E, Schols HA, Van Boekel MA, Smit G (2008b) Low molecular weight melanoidins in coffee brew. J Agric Food Chem 56:4060–4067

    PubMed  CAS  Google Scholar 

  • Bekedam EK, Schols HA, Cämmerer B, Kroh LW, van Boekel MA, Smit G (2008c) Electron spin resonance (ESR) studies on the formation of roasting-induced antioxidative structures in coffee brews at different degrees of roast. J Agric Food Chem 56:4597–4604

    PubMed  Google Scholar 

  • Bekedam EK, Schols HA, Van Boekel MA, Smit G (2008d) Incorporation of chlorogenic acids in coffee brew melanoidins. J Agric Food Chem 56:2055–2063

    PubMed  CAS  Google Scholar 

  • Bergmann R, Helling R, Heichert C, Scheunemann M, Mäding P, Wittrisch H, Johannsen B, Henle T (2001) Radio fluorination and positron emission tomography (PET) as a new approach to study the in vivo distribution and elimination of the advanced glycation endproducts N epsilon-carboxymethyllysine (CML) and N epsilon-carboxyethyllysine (CEL). Nahrung 45:182–188

    PubMed  CAS  Google Scholar 

  • Bichler J, Cavin C, Simic T, Chakraborty A, Ferk F, Hoelzl C, Schulte-Hermann R, Kundi M, Haidinger G, Angelis K, Knasmüller S (2007) Coffee consumption protects human lymphocytes against oxidative and 3-amino-1-methyl-5H-pyrido[4,3-b]indole acetate (Trp-P-2) induced DNA-damage: results of an experimental study with human volunteers. Food Chem Toxicol 45:1428–1436

    PubMed  CAS  Google Scholar 

  • Borrelli RC, Fogliano V (2005) Bread crust melanoidins as potential prebiotic ingredients. Mol Nutr Food Res 49:673–678

    PubMed  CAS  Google Scholar 

  • Borrelli RC, Fogliano V, Monti SM, Ames JM (2002) Characterisation of melanoidins from a glucose–glycine model system. Eur Food Res Technol 215:210–215

    CAS  Google Scholar 

  • Borrelli RC, Mennella C, Barba F, Russo M, Russo GL, Krome K, Erbersdobler H, Faist V, Fogliano V (2003) Characterization of coloured compounds obtained by enzymatic extraction of bakery products. Food Chem Toxicol 41:1367–1374

    PubMed  CAS  Google Scholar 

  • Borrelli RC, Esposito F, Napolitano A, Ritieni A, Fogliano V (2004) Characterization of a new potential functional ingredient: coffee silverskin. J Agric Food Chem 52:1338–1343

    PubMed  CAS  Google Scholar 

  • Böttler U, Sommerfeld K, Volz N, Pahlke G, Teller N, Somoza V, Lang R, Hofmann T, Marko D (2010) Coffee constituents as modulators of Nrf2 nuclear translocation and ARE (EpRE)-dependent gene expression. Mol Nutr Food Res (in press)

  • Brands CMJ, Wedzicha BL, van Boekel MAJS (2002) Quantification of melanoidin concentration in sugar-casein systems. J Agric Food Chem 50:1178–1183

    PubMed  CAS  Google Scholar 

  • Calligaris S, Manzocco L, Anese M, Nicoli MC (2004) Effect of heat-treatment on the antioxidant and pro-oxidant activity of milk. Int Dairy J 14:421–427

    CAS  Google Scholar 

  • Cammerer B, Kroh LW (1995) Investigation of the influence of reaction conditions on the elementary composition of melanoidins. Food Chem 53:55–59

    Google Scholar 

  • Cämmerer B, Jalyschko W, Kroh LW (2002) Intact carbohydrate structures as part of the melanoidin skeleton. J Agric Food Chem 50:2083–2087

    PubMed  Google Scholar 

  • Cavin C, Marin-Kuan M, Langouët S, Bezençon C, Guignard G, Verguet C, Piguet D, Holzhäuser D, Cornaz R, Schilter B (2008) Induction of Nrf2-mediated cellular defenses and alteration of phase I activities as mechanisms of chemoprotective effects of coffee in the liver. Food Chem Toxicol 46:1239–1248

    PubMed  CAS  Google Scholar 

  • COST (1998) Melanoidins in food and health: COST Action 919. European Union, Brussels, Belgium

  • D’Agostina A, Boschin G, Bacchini F, Arnoldi A (2004) Investigations on the high molecular weight foaming fractions of espresso coffee. J Agric Food Chem 52:7118–7125

    PubMed  Google Scholar 

  • Daglia M, Cuzzoni MT, Dacarro C (1994) Antibacterial activity of coffee. J Agric Food Chem 42:2270–2272

    CAS  Google Scholar 

  • Daglia M, Tarsi R, Papetti A, Grisoli P, Dacarro C, Pruzzo C (2002) Antiadhesive effect of green and roasted coffee on Streptococcus mutans’ adhesive properties on saliva-coated hydroxyapatite beads. J Agric Food Chem 50:1225–1229

    PubMed  CAS  Google Scholar 

  • Daglia M, Racchi M, Papetti A, Lanni C, Govoni S, Gazzani G (2004) In vitro and ex vivo antihydroxyl radical activity of green and roasted coffee. J Agric Food Chem 52:1700–1704

    PubMed  CAS  Google Scholar 

  • Delgado-Andrade C, Morales FJ (2005) Unraveling the contribution of melanoidins to the antioxidant activity of coffee brews. J Agric Food Chem 53:1403–1407

    PubMed  CAS  Google Scholar 

  • Delgado-Andrade C, Rufián-Henares JA, Morales FJ (2005) Assessing the antioxidant activity of melanoidins from coffee brews by different antioxidant methods. J Agric Food Chem 53:7832–7836

    PubMed  CAS  Google Scholar 

  • Dell’Aquila C, Ames JM, Gibson GR, Wynne AG (2003) Fermentation of heated gluten systems by gut microflora. Eur Food Res Technol 217:382–386

    Google Scholar 

  • Dittrich R, Dragonas C, Kannenkeril D, Hoffmann I, Mueller A, Beckmann MW, Pischetsrieder M (2009) A diet rich in Maillard reaction products protects LDL against copper induced oxidation ex vivo, a human intervention trial. Food Res Int 42:1315–1322

    Google Scholar 

  • Einarsson H (1987) The effect pH and temperature on the antibacterial effect of Maillard reaction products. Lebensm Wiss Technol 20:51–55

    CAS  Google Scholar 

  • Einarsson H, Snjgg BG, Eriksson C (1983) Inhibition of bacterial growth by Maillard reaction products. J Agric Food Chem 31:1043–1047

    CAS  Google Scholar 

  • Erbersdobler HF, Gunsser I, Weber G (1970) Abbau von Fruktoselysin durch die Darmflora. Zbl Vet Med A 17:573–575

    CAS  Google Scholar 

  • Erbersdobler HF, Purwing U, Bossen M, Trautwein EA (1986) Urinary excretion of fructoselysine in human volunteers and diabetic patients. In: Fujimaki M, Namiki N, Kato H (eds) Amino-carbonyl reactions in food and biological systems. Developments in food science 13. Elsevier, Tokyo, pp 503–508

  • Esposito F, Morisco F, Verde V, Ritieni A, Alezio A, Caporaso N, Fogliano V (2003) Moderate coffee consumption increases plasma glutathione but not homocysteine in healthy subjects. Aliment Pharmacol Ther 17:595–601

    PubMed  CAS  Google Scholar 

  • Faist V, Erbersdobler HF (2001) Metabolic transit and in vivo effects of melanoidins and precursors compounds deriving from the Maillard reaction. Ann Nutr Metab 45:1–12

    PubMed  CAS  Google Scholar 

  • Falcone PM, Giudici P (2008) Molecular size and molecular size distribution affecting traditional balsamic vinegar aging. J Agric Food Chem 56:7057–7066

    PubMed  CAS  Google Scholar 

  • Finot PA, Furniss DE (1989) Metabolic transit and toxicity of Maillard reaction products. Prog Clin Biol Res 304:343–358

    PubMed  CAS  Google Scholar 

  • Finot PA, Magnenat E (1981) Metabolic transit of early and advanced Maillard products. Prog Food Nutr Sci 5:193–207

    PubMed  CAS  Google Scholar 

  • Fogliano V, Monti SM, Musella T, Randazzo G, Ritieni A (1999) Formation of coloured Maillard reaction products in a gluten-glucose model system. Food Chem 66:293–299

    CAS  Google Scholar 

  • Garsetti M, Pellegrini N, Baggio C, Brighenti F (2000) Antioxidant activity in human faeces. Br J Nutr 84:705–710

    PubMed  CAS  Google Scholar 

  • Gibson GR, Probert HM, Loo JV, Rastall RA, Roberfroid MB (2004) Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev 17:259–275

    PubMed  CAS  Google Scholar 

  • Giudici P, Gullo M, Solieri L, Falcone PM (2009) Chapter 4: technological and microbiological aspects of traditional balsamic vinegar and their influence on quality and sensorial properties. Adv Food Nutr Res 58:137–182

    Google Scholar 

  • Gniechwitz D, Reichardt N, Meiss E, Ralph J, Steinhart H, Blaut M, Bunzel M (2008a) Characterization and fermentability of an ethanol soluble high molecular weight coffee fraction. J Agric Food Chem 56:5960–5969

    PubMed  CAS  Google Scholar 

  • Gniechwitz D, Reichardt N, Ralph J, Blaut M, Steinhart H, Bunzel M (2008b) Isolation and characterisation of a coffee melanoidin fraction. J Sci Food Agric 88:2153–2160

    CAS  Google Scholar 

  • Gokmen V, Serpen A, Fogliano V (2009) Direct measurement of the total antioxidant capacity of foods: the ‘QUENCHER’ approach. Trends Food Sci Technol 20:278–288

    Google Scholar 

  • Gomyo T, Horikoshi M (1976) On the interaction of melanoidins with metallic ions. Agric Biol Chem 40:33–40

    CAS  Google Scholar 

  • Goya L, Delgado-Andrade C, Rufián-Henares JA, Bravo L, Morales FJ (2007) Effect of coffee melanoidin on human hepatoma HepG2 cells. Protection against oxidative stress induced by tert-butylhydroperoxide. Mol Nutr Food Res 51:536–545

    PubMed  CAS  Google Scholar 

  • Hashiba H (1986) Oxidative browning of Amadori compounds. Color formation by iron with Maillard reaction products. In: Fujimaki M, Kato H, Namiki M (eds) Amino-carbonyl reactions in food and biological systems. Elsevier, Amsterdam, pp 155–164

    Google Scholar 

  • Hidalgo FJ, Zamora R (2008) Food anoxia and the formation of either flavor or toxic compounds by amino acid degradation initiated by oxidized lipids. Ann N Y Acad Sci 1126:25–29

    PubMed  CAS  Google Scholar 

  • Hiramoto S, Itoh K, Shizuuchi S, Kawachi Y, Morishita Y, Nagase M, Suzuki Y, Nobuta Y, Sudou Y, Nakamura O, Kagaya I, Goshima H, Kodama Y, Icatro FC, Koizumi W, Saigenji K, Miura S, Sugiyama T, Kimura N (2004) Melanoidin, a food protein-derived advanced Maillard reaction product, suppresses Helicobacter pylori in vitro and in vivo. Helicobacter 9:429–435

    PubMed  CAS  Google Scholar 

  • Hodge JE (1953) Chemistry of browning reactions in models systems. J Agric Food Chem 1:928–943

    CAS  Google Scholar 

  • Hofmann T (1998) Studies on the relationship between molecular weight and the color potency of fractions obtained by thermal treatment of glucose amino acid and glucose/protein solutions by using ultracentrifugation and color dilution techniques. J Agric Food Chem 46:3891–3895

    CAS  Google Scholar 

  • Hofmann T, Schieberle P (2002) Chemical interactions between odoractive thiols and melanoidins involved in the aroma staling of coffee beverages. J Agric Food Chem 50:319–326

    PubMed  CAS  Google Scholar 

  • Hofmann T, Bors W, Stettmaier K (1999) Radical-assisted melanoidin formation during thermal processing of foods as well as under physiological conditions. J Agric Food Chem 47:391–396

    PubMed  CAS  Google Scholar 

  • Hofmann T, Czerny M, Calligaris S, Schieberle P (2001) Model studies on the influence of coffee melanoidins on flavor volatiles of coffee beverages. J Agric Food Chem 49:2382–2386

    PubMed  CAS  Google Scholar 

  • Homma S, Murata H, Terasawa N, Lee Y-S (1998) Characterisation of food melanoidins. In the Maillard reaction in foods and medicine. Royal Society of Chemistry, Cambridge, UK, p 412

  • Horikoshi M, Ohmura M, Gomyo T, Kuwabara Y, Ueda S (1981) Effects of browning products on the intestinal microflora of the rat. In Erikkson C (ed) Progress in food and nutrition science. Pergamon Press, Oxford, UK, pp 13–15, 223–228

  • Jägerstad M, Skog K, Solyakov A (2002) Effects of possible binding of potential human carcinogens in cooked foods to melanoidins. In: COST-919 proceedings, vol 1, pp 89–92

  • Jemmali MJ (1969) Influence of Maillard reaction products on some bacteria of intestinal flora. J Appl Bacteriol 32:151–154

    PubMed  CAS  Google Scholar 

  • Kato H, Hayase F (2002) An approach to estimate the chemical structure of melanoidins. Int Congress Ser 1245:3–7

    CAS  Google Scholar 

  • Kuntcheva MJ, Obretenov TD (1996) Isolation and characterization of melanoidins from beer. Z Lebensm-Unters Forsch 202:238–243

    CAS  Google Scholar 

  • Lanciotti R, Anese M, Sinigaglia M, Severini C, Massini R (1999) Effects of heated glucose–fructose–glutamic acid solutions on the growth of Bacillus stearothermophilus. Lebensm Wiss Technol 32:223–230

    CAS  Google Scholar 

  • Lindenmeier M, Faist V, Hofmann T (2002) Structural and functional characterization of pronyl-lysine, a novel protein modification in bread crust melanoidins showing in vitro antioxidative and phase I/II enzyme modulating activity. J Agric Food Chem 50:6997–7006

    PubMed  CAS  Google Scholar 

  • López-Galilea I, De Peña MP, Cid C (2007) Correlation of selected constituents with the total antioxidant capacity of coffee beverages: influence of the brewing procedure. J Agric Food Chem 55:6110–6117

    PubMed  Google Scholar 

  • Maier HGE, Buttle H (1973) Isolation and characterization of brown roast compounds of coffee. 2. Z Lebensm-Unters Forsch A 150:331–334

    CAS  Google Scholar 

  • Mattila T, Sandholm M (1989) Antibacterial effect of the glucose oxidase-glucose system on food-poisoning organisms. Int J Food Microbiol 8:165–174

    Google Scholar 

  • Meshcheryakova S, Agienko K, Dostizh, Obi. Khim. (1987) Gigieny Obespech. Povysh. Kach. Moloch. Prod., Moskva, 95

  • Migo VP, del Rosario EJ, Matsumura M (1997) Flocculation of melanoidins induced by inorganic ions. J Ferment Bioeng 83:287–291

    CAS  Google Scholar 

  • Milic BL, Grujic-Injac B, Piletic MV, Lajgic S, Kolarov LA (1975) Melanoidins and carbohydrates in roasted barley. J Agric Food Chem 23:960–963

    PubMed  CAS  Google Scholar 

  • Mok TA, Lynch SR, Cook JD (1983) Inhibition of food iron absorption by coffee. Am J Clin Nutr 37:416–420

    Google Scholar 

  • Morales FJ (2002) Application of capillary zone electrophoresis to the study of food and food-model melanoidins. Food Chem 76:363–369

    CAS  Google Scholar 

  • Morales FJ, Fernández-Fraguas MC, Jiménez-Pérez S (2005) Iron-binding ability of melanoidins from food and model systems. Food Chem 90:821–827

    CAS  Google Scholar 

  • Natella F, Nardini M, Giannetti I, Dattilo C, Scaccini C (2002) Coffee drinking influences plasma antioxidant capacity in humans. J Agric Food Chem 50:6211–6216

    PubMed  CAS  Google Scholar 

  • Nunes FM, Coimbra MA (2007) Melanoidins from coffee infusions. Fractionation, chemical characterization, and effect of the degree of roast. J Agric Food Chem 55:3967–3977

    PubMed  CAS  Google Scholar 

  • O’Brien J, Morrissey PA (1997) Metal ion complexation byproducts of the Maillard reaction. Food Chem 58:17–27

    Google Scholar 

  • Obretenov T, Vernin G (1998) Melanoidins in the Maillard reaction. In: Contis ET, Ho C-T, Mussinan CJ, Parliment TH, Shahidi F, Spanier AM (eds) Food flavors: formation, analysis and packaging influences, vol 40. Elsevier Science, Amsterdam, pp 455–482

  • Obretenov TD, Kuntcheva MJ, Mantchev SC, Valkova GD (1991) Isolation and characterization of melanoidins from malt and malt roots. J Food Biochem 15:279–294

    CAS  Google Scholar 

  • Obretenov TD, Ivanova SD, Kuntcheva MJ, Somov GT (1993) Melanoidin formation in cooked meat-products. J Agric Food Chem 41:653–656

    CAS  Google Scholar 

  • Obretenov V, Demyttenaere J, Abbaspour-Tehrani K, Adams A, Kersiene M, De Kimpe N (2002) Flavor release in the presence of melanoidins prepared from l-(+)-ascorbic acid and amino acids. J Agric Food Chem 50:4244–4250

    PubMed  CAS  Google Scholar 

  • Oliviero T, Capuano E, Cammerer B, Fogliano V (2009) Influence of roasting on the antioxidant activity and HMF formation of a cocoa bean model systems. J Agric Food Chem 57:147–152

    PubMed  CAS  Google Scholar 

  • Ortega-Heras M, Gonzalez-Sanjosé ML (2009) Binding capacity of brown pigments present in special Spanish sweet wines. Food Sci Technol 42:1729–1737

    CAS  Google Scholar 

  • Paur I, Balstad T, Blomhoff R (2010) Degree of roasting is the main determinant of the effects of coffee on NF-κB and EpRE. Free Radic Biol Med 48:1218–1227

    PubMed  CAS  Google Scholar 

  • Petracco M, Navarini L, Abatangelo A, Gombac V, D’Agnolo E, Zanetti F (1999) Isolation and characterisation of a foaming fraction from hot water extracts of roasted coffee. In: Proceedings of the 18th Colloquium of Science International Cafe, pp 95–105

  • Ponnampalam R, Mondy NI (2006) Effect of baking and frying on nutritive value of potatoes nitrogenous constituents. J Food Sci 48:1613–1616

    Google Scholar 

  • Reichardt N, Gniechwitz D, Steinhart H, Bunzel M, Blaut M (2009) Characterization of high molecular weight coffee fractions and their fermentation by human intestinal microbiota. Mol Nutr Food Res 53(2):287–299

    Google Scholar 

  • Rendleman JA (1987) Complexation of calcium by melanoidins and its role in determining bioavailability. J Food Sci 6:1699–1705

    Google Scholar 

  • Rivero D, Perez-Magarino S, Gonzalez-Sanjose ML, Valls-Belles V, Codoner P, Muniz P (2005) Inhibition of induced DNA oxidative damage by beers: correlation with the content of polyphenols and melanoidins. J Agric Food Chem 53:3637–3642

    PubMed  CAS  Google Scholar 

  • Rivero-Pérez MD, Pérez-Magariño S, González-SanJose ML (2002) Role of melanoidins in sweet wines. Anal Chim Acta 458:169–175

    Google Scholar 

  • Rufián-Henares JA, De la Cueva SP (2009) Antimicrobial activity of coffee melanoidins—a study of their metal-chelating properties. J Agric Food Chem 57:432–438

    PubMed  Google Scholar 

  • Rufián-Henares JA, Morales FJ (2006) A new application of a commercial microtiter plate-based assay for assessing the antimicrobial activity of Maillard reaction products. Food Res Int 39:33–39

    Google Scholar 

  • Rufián-Henares JA, Morales FJ (2007) Effect of in vitro enzymatic digestion on antioxidant activity of coffee melanoidins and fractions. J Agric Food Chem 55:10016–10021

    PubMed  Google Scholar 

  • Rufián-Henares JA, Morales FJ (2008a) Antimicrobial activity of melanoidins against Escherichia coli is mediated by a membrane damage mechanism. J Agric Food Chem 56:2357–2362

    Google Scholar 

  • Rufián-Henares JA, Morales FJ (2008b) Microtiter plate-based assay for screening the specific antimicrobial activity of melanoidins. Food Chem 111:1069–1074

    Google Scholar 

  • Sakurai H, Hashiba H, Okuhara A (1981) High molecular nitrogen-compounds in soy sauce. J Agric Chem Soc Jpn 55:7–14

    CAS  Google Scholar 

  • Saura-Calixto F (1998) Antioxidant dietary fibre product: a new concept and a potential food ingredient. J Agric Food Chem 46:4303–4306

    CAS  Google Scholar 

  • Serpen A, Capuano E, Fogliano V, Gokmen V (2007) A new procedure to measure the antioxidant activity of insoluble food components. J Agric Food Chem 55:7676–7681

    PubMed  CAS  Google Scholar 

  • Serpen A, Gökmen V, Pellegrini N, Fogliano V (2008) Direct measurement of total antioxidant capacity of cereal products. J Cereal Sci 48(2008):816–820

    CAS  Google Scholar 

  • Smaniotto A, Bertazzo A, Comai S, Traldi P (2009) The role of peptides and proteins in melanoidin formation. J Mass Spectrom 44:410–418

    PubMed  CAS  Google Scholar 

  • Solyakov A, Skog K, Jegerstad M (2002) Binding of mutagenic/carcinogenic heterocyclic amines to MRPs under stimulated gastrointestinal conditions. In: Fogliano V, Henle T (eds) Melanoidins in food and health. COST Action 919, vol 3. European Communities, Luxembourg

    Google Scholar 

  • Somoza V (2005) Five years of research on health risks and benefits of Maillard reaction products: an update. Mol Nutr Food Res 49:663–672

    PubMed  CAS  Google Scholar 

  • Somoza V, Lindenmeier M, Wenzel E, Frank O, Erbersdobler HF, Hofmann T (2003) Activity-guided identification of a chemopreventive compound in coffee beverage using in vitro and in vivo techniques. J Agric Food Chem 51:6861–6869

    PubMed  CAS  Google Scholar 

  • Somoza V, Wenzel E, Lindenmeier M, Grothe D, Erbersdobler HF, Hofmann T (2005) Influence of feeding malt, bread crust, and a pronylated protein on the activity of chemopreventive enzymes and antioxidative defense parameters in vivo. J Agric Food Chem 53:8176–8182

    PubMed  CAS  Google Scholar 

  • Somoza V, Wenzel E, Weiss C, Clawin-Rädecker I, Grübel N, Erbersdobler HF (2006) Dose-dependent utilisation of casein-linked lysinoalanine, N(epsilon)-fructoselysine and N(epsilon)-carboxymethyllysine in rats. Mol Nutr Food Res 50:833–841

    PubMed  CAS  Google Scholar 

  • Stadler RH, Varga N, Milo C, Schilter B, Vera FA, Welti DH (2002) Alkylpyridiniums. 2. Isolation and quantification in roasted and ground coffees. J Agric Food Chem 50:1200–1206

    PubMed  CAS  Google Scholar 

  • Stecchini ML, Giavedoni P, Sarais I, Lerici CR (1991) Effect of Maillard reaction products on the growth of selected food-poisoning micro-organism. Lett Appl Microbiol 13:93–96

    Google Scholar 

  • Stegink LD, Freeman JB, Den Besten L, Filer LJ (1981) Maillard reaction products in parenteral nutrition. Prog Food Nutr Sci 5:265–268

    PubMed  CAS  Google Scholar 

  • Summa C, McCourt J, Cämmerer B, Fiala A, Probst M, Kun S, Anklam E, Wagner KH (2008) Radical scavenging activity, anti-bacterial and mutagenic effects of cocoa bean Maillard reaction products with degree of roasting. Mol Nutr Food Res 52:342–351

    PubMed  CAS  Google Scholar 

  • Tagliazucchi D, Verzelloni E, Conte A (2010) Effect of dietary melanoidins on lipid peroxidation during simulated gastric digestion: their possible role in the prevention of oxidative damage. J Agric Food Chem 58:2513–2519

    PubMed  CAS  Google Scholar 

  • Takenaka M, Sato N, Asakawa H, Wen X, Murate M, Homma S (2005) Characterization of a metal-chelating substance in coffee. Biosci Biotechnol Biochem 69:26–30

    PubMed  CAS  Google Scholar 

  • Tressl R, Wondrak GT, Kruger RP, Rewicki D (1998) New melanoidin-like Maillard polymers from 2-deoxypentoses. J Agric Food Chem 46:104–110

    PubMed  CAS  Google Scholar 

  • Viani R, Illy A (1995) Espresso coffee, the science of quality. Elsevier Academic Press, San Diego

  • Vitaglione P, Napolitano A, Fogliano V (2008) Cereal dietary fibre as natural functional ingredient to deliver phenolic compounds into the gut. Trends Food Sci Technol 19:451–463

    CAS  Google Scholar 

  • Wang H, Jenner AM, Lee JCY, Shui G, Tang SY, Whiteman M, Wenk MR, Halliwell B (2007) The identification of antioxidants in dark soy sauce. Free Radic Res 41:479–488

    PubMed  CAS  Google Scholar 

  • Wenzel E, Tasto S, Erbersdobler HF, Faist V (2002) Effect of heat treated proteins on selected parameters of the biotransformation-system in the rat. Ann Nutr Metab 46:9–16

    PubMed  CAS  Google Scholar 

  • Wiame E, Delpierre G, Collard F, Van Schaftingen E (2002) Identification of a pathway for the utilization of the Amadori product fructoselysine in Escherichia coli. J Biol Chem 277:42523–42529

    PubMed  CAS  Google Scholar 

  • Wijewickreme AN, Kitts DD, Durance TD (1997) Reaction conditions influence the elementary composition and metal chelating affinity of nondialyzable model Maillard reaction products. J Agric Food Chem 45:4577–4583

    CAS  Google Scholar 

  • Yen GC, Hsieh PP (1994) Possible mechanism of antimutagenic effect of Maillard reaction products prepared from xylose and lysine. J Agric Food Chem 42:133–137

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Fogliano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morales, F.J., Somoza, V. & Fogliano, V. Physiological relevance of dietary melanoidins. Amino Acids 42, 1097–1109 (2012). https://doi.org/10.1007/s00726-010-0774-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0774-1

Keywords

Navigation