Skip to main content
Log in

Down-regulation of the ubiquitin–proteasome proteolysis system by amino acids and insulin involves the adenosine monophosphate-activated protein kinase and mammalian target of rapamycin pathways in rat hepatocytes

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The purpose of this work was to examine whether changes in dietary protein levels could elicit differential responses of tissue proteolysis and the pathway involved in this response. In rats fed with a high protein diet (55%) for 14 days, the liver was the main organ where adaptations occurred, characterized by an increased protein pool and a strong, meal-induced inhibition of the protein breakdown rate when compared to the normal protein diet (14%). This was associated with a decrease in the key-proteins involved in expression of the ubiquitin–proteasome and autophagy pathway gene and a reduction in the level of hepatic ubiquitinated protein. In hepatocytes, we demonstrated that the increase in amino acid (AA) levels was sufficient to down-regulate the ubiquitin proteasome pathway, but this inhibition was more potent in the presence of insulin. Interestingly, AICAR, an adenosine monophosphate-activated protein kinase (AMPK) activator, reversed the inhibition of protein ubiquination induced by insulin at high AA concentrations. Rapamycin, an mammalian target of rapamycin (mTOR) inhibitor, reversed the inhibition of protein ubiquination induced by a rise in insulin levels with both high and low AA concentrations. Moreover, in both low and high AA concentrations in the presence of insulin, AICAR decreased the mTOR phosphorylation, and in the presence of both AICAR and rapamycin, AICAR reversed the effects of rapamycin. These results demonstrate that the inhibition of AMPK and the activation of mTOR transduction pathways, are required for the down-regulation of protein ubiquitination in response to high amino acid and insulin concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Attaix D, Aurousseau E, Combaret L, Kee A, Larbaud D et al (1998) Ubiquitin–proteasome-dependent proteolysis in skeletal muscle. Reprod Nutr Dev 38(2):153–165

    Article  PubMed  CAS  Google Scholar 

  • Attaix D, Combaret L, Pouch MN, Taillandier D (2001) Regulation of proteolysis. Curr Opin Clin Nutr Metab Care 4(1):45–49

    Article  PubMed  CAS  Google Scholar 

  • Azzout-Marniche D, Gaudichon C, Blouet C, Bos C, Mathe V et al (2007) Liver glyconeogenesis: a pathway to cope with postprandial amino acid excess in high-protein fed rats? Am J Physiol Regul Integr Comp Physiol 292(4):R1400–R1407

    Article  PubMed  CAS  Google Scholar 

  • Balage M, Sinaud S, Prod'homme M, Dardevet D, Vary TC et al (2001) Amino acids and insulin are both required to regulate assembly of the eIF4E·eIF4G complex in rat skeletal muscle. Am J Physiol Endocrinol Metab 281(3):E565–E574

    Google Scholar 

  • Baum JI, Layman DK, Freund GG, Rahn KA, Nakamura MT et al (2006) A reduced carbohydrate, increased protein diet stabilizes glycemic control and minimizes adipose tissue glucose disposal in rats. J Nutr 136(7):1855–1861

    PubMed  CAS  Google Scholar 

  • Bleiberg-Daniel F, Lamri Y, Feldmann G, Lardeux B (1994) Glucagon administration in vivo stimulates hepatic RNA and protein breakdown in fed and fasted rats. Biochem J 299(Pt 3):645–649

    PubMed  CAS  Google Scholar 

  • Blommaart EF, Luiken JJ, Blommaart PJ, van Woerkom GM, Meijer AJ (1995) Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes. J Biol Chem 270(5):2320–2326

    Article  PubMed  CAS  Google Scholar 

  • Blommaart EF, Luiken JJ, Meijer AJ (1997) Autophagic proteolysis: control and specificity. Histochem J 29(5):365–385

    Article  PubMed  CAS  Google Scholar 

  • Blouet C, Mariotti F, Azzout-Marniche D, Bos C, Mathe V et al (2006) The reduced energy intake of rats fed a high-protein low-carbohydrate diet explains the lower fat deposition, but macronutrient substitution accounts for the improved glycemic control. J Nutr 136(7):1849–1854

    PubMed  CAS  Google Scholar 

  • Boirie Y, Dangin M, Gachon P, Vasson MP, Maubois JL et al (1997) Slow and fast dietary proteins differently modulate postprandial protein accretion. Proc Natl Acad Sci USA 94(26):14930–14935

    Article  PubMed  CAS  Google Scholar 

  • Busquets S, Alvarez B, Lopez-Soriano FJ, Argiles JM (2002) Branched-chain amino acids: a role in skeletal muscle proteolysis in catabolic states? J Cell Physiol 191(3):283–289

    Article  PubMed  CAS  Google Scholar 

  • Capel F, Prod’homme M, Bechet D, Taillandier D, Balage M et al (2008) Lysosomal and proteasome-dependent proteolysis are differentially regulated by insulin and/or amino acids following feeding in young, mature and old rats. J Nutr Biochem 20(8):570–576

    Article  PubMed  Google Scholar 

  • Cheng SW, Fryer LG, Carling D, Shepherd PR (2004) Thr2446 is a novel mammalian target of rapamycin (mTOR) phosphorylation site regulated by nutrient status. J Biol Chem 279(16):15719–15722 Epub 12004 Feb 15717

    Article  PubMed  CAS  Google Scholar 

  • Chevalier L, Bos C, Gryson C, Luengo C, Walrand S et al (2009) High-protein diets differentially modulate protein content and protein synthesis in visceral and peripheral tissues in rats. Nutrition 25(9):932–939

    Article  PubMed  CAS  Google Scholar 

  • Chotechuang N, Azzout-Marniche D, Bos C, Chaumontet C, Gausseres N et al (2009) mTOR, AMPK, and GCN2 coordinate the adaptation of hepatic energy metabolic pathways in response to protein intake in the rat. Am J Physiol Endocrinol Metab 297(6):E1313–E1323

    Article  PubMed  CAS  Google Scholar 

  • Combaret L, Dardevet D, Rieu I, Pouch MN, Bechet D et al (2005) A leucine-supplemented diet restores the defective postprandial inhibition of proteasome-dependent proteolysis in aged rat skeletal muscle. J Physiol 569(Pt 2):489–499

    Article  PubMed  CAS  Google Scholar 

  • Costelli P, Reffo P, Penna F, Autelli R, Bonelli G et al (2005) Ca2+-dependent proteolysis in muscle wasting. Int J Biochem Cell Biol 37(10):2134–2146

    Article  PubMed  CAS  Google Scholar 

  • Del Roso A, Vittorini S, Cavallini G, Donati A, Gori Z et al (2003) Ageing-related changes in the in vivo function of rat liver macroautophagy and proteolysis. Exp Gerontol 38(5):519–527

    Article  PubMed  CAS  Google Scholar 

  • Demarchi F, Bertoli C, Copetti T, Tanida I, Brancolini C et al (2006) Calpain is required for macroautophagy in mammalian cells. J Cell Biol 175(4):595–605

    Article  PubMed  CAS  Google Scholar 

  • Ding X, Price SR, Bailey JL, Mitch WE (1997) Cellular mechanisms controlling protein degradation in catabolic states. Miner Electrolyte Metab 23(3–6):194–197

    PubMed  CAS  Google Scholar 

  • Elsasser S, Finley D (2005) Delivery of ubiquitinated substrates to protein-unfolding machines. Nat Cell Biol 7(8):742–749

    Article  PubMed  CAS  Google Scholar 

  • Flakoll PJ, Kulaylat M, Frexes-Steed M, Hourani H, Brown LL et al (1989) Amino acids augment insulin's suppression of whole body proteolysis. Am J Physiol 257(6 Pt 1):E839–E847

    Google Scholar 

  • Forslund AH, Hambraeus L, Olsson RM, El-Khoury AE, Yu YM et al (1998) The 24-h whole body leucine and urea kinetics at normal and high protein intakes with exercise in healthy adults. Am J Physiol 275(2 Pt 1):310–320

    Google Scholar 

  • Gelfand RA, Barrett EJ (1987) Effect of physiologic hyperinsulinemia on skeletal muscle protein synthesis and breakdown in man. J Clin Invest 80(1):1–6

    Article  PubMed  CAS  Google Scholar 

  • Goll DE, Thompson VF, Li H, Wei W, Cong J (2003) The calpain system. Physiol Rev 83(3):731–801

    PubMed  CAS  Google Scholar 

  • Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A et al (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30(2):214–226

    Article  PubMed  CAS  Google Scholar 

  • Hamel FG, Upward JL, Siford GL, Duckworth WC (2003) Inhibition of proteasome activity by selected amino acids. Metabolism 52(7):810–814

    Article  PubMed  CAS  Google Scholar 

  • Hamel FG, Fawcett J, Bennett RG, Duckworth WC (2004) Control of proteolysis: hormones, nutrients, and the changing role of the proteasome. Curr Opin Clin Nutr Metab Care 7(3):255–258

    Article  PubMed  CAS  Google Scholar 

  • Harber MP, Schenk S, Barkan AL, Horowitz JF (2005) Effects of dietary carbohydrate restriction with high protein intake on protein metabolism and the somatotropic axis. J Clin Endocrinol Metab 90(9):5175–5181

    Article  PubMed  CAS  Google Scholar 

  • Hicke L, Dunn R (2003) Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. Annu Rev Cell Dev Biol 19:141–172

    Article  PubMed  CAS  Google Scholar 

  • Ilian MA, Forsberg NE (1992) Gene expression of calpains and their specific endogenous inhibitor, calpastatin, in skeletal muscle of fed and fasted rabbits. Biochem J 287(Pt 1):163–171

    PubMed  CAS  Google Scholar 

  • Kadowaki M, Kanazawa T (2003) Amino acids as regulators of proteolysis. J Nutr 133(6 Suppl 1):2052–2056

    Google Scholar 

  • Kadowaki M, Poso AR, Mortimore GE (1992) Parallel control of hepatic proteolysis by phenylalanine and phenylpyruvate through independent inhibitory sites at the plasma membrane. J Biol Chem 267(31):22060–22065

    PubMed  CAS  Google Scholar 

  • Kanazawa T, Taneike I, Akaishi R, Yoshizawa F, Furuya N et al (2004) Amino acids and insulin control autophagic proteolysis through different signaling pathways in relation to mTOR in isolated rat hepatocytes. J Biol Chem 279(9):8452–8459

    Article  PubMed  CAS  Google Scholar 

  • Kettelhut IC, Wing SS, Goldberg AL (1988) Endocrine regulation of protein breakdown in skeletal muscle. Diabetes Metab Rev 4(8):751–772

    Article  PubMed  CAS  Google Scholar 

  • Klionsky DJ, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290(5497):1717–1721

    Article  PubMed  CAS  Google Scholar 

  • Lacroix M, Gaudichon C, Martin A, Morens C, Mathe V et al (2004) A long-term high-protein diet markedly reduces adipose tissue without major side effects in Wistar male rats. Am J Physiol Regul Integr Comp Physiol 287(4):R934–R942

    Article  PubMed  CAS  Google Scholar 

  • Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6(4):463–477

    Article  PubMed  CAS  Google Scholar 

  • Lusk G (1919) The elements of the science of Nutrition. W. B. Saunders Company, Philadelphia

    Google Scholar 

  • Marinovic AC, Zheng B, Mitch WE, Price SR (2007) Tissue-specific regulation of ubiquitin (UbC) transcription by glucocorticoids: in vivo and in vitro analyses. Am J Physiol Renal Physiol 292(2):F660–F666

    Article  PubMed  CAS  Google Scholar 

  • Medina R, Wing SS, Haas A, Goldberg AL (1991) Activation of the ubiquitin-ATP-dependent proteolytic system in skeletal muscle during fasting and denervation atrophy. Biomed Biochim Acta 50(4–6):347–356

    PubMed  CAS  Google Scholar 

  • Meley D, Bauvy C, Houben-Weerts JH, Dubbelhuis PF, Helmond MT et al (2006) AMP-activated protein kinase and the regulation of autophagic proteolysis. J Biol Chem 281(46):34870–34879

    Article  PubMed  CAS  Google Scholar 

  • Miotto G, Venerando R, Khurana KK, Siliprandi N, Mortimore GE (1992) Control of hepatic proteolysis by leucine and isovaleryl-L-carnitine through a common locus. Evidence for a possible mechanism of recognition at the plasma membrane. J Biol Chem 267(31):22066–22072

    PubMed  CAS  Google Scholar 

  • Mitch WE, Goldberg AL (1996) Mechanisms of muscle wasting. The role of the ubiquitin–proteasome pathway. N Engl J Med 335(25):1897–1905

    Article  PubMed  CAS  Google Scholar 

  • Mortimore GE, Mondon CE (1970) Inhibition by insulin of valine turnover in liver. Evidence for a general control of proteolysis. J Biol Chem 245(9):2375–2383

    PubMed  CAS  Google Scholar 

  • Mortimore GE, Hutson NJ, Surmacz CA (1983) Quantitative correlation between proteolysis and macro- and microautophagy in mouse hepatocytes during starvation and refeeding. Proc Natl Acad Sci USA 80(8):2179–2183

    Article  PubMed  CAS  Google Scholar 

  • Mortimore GE, Poso AR, Lardeux BR (1989) Mechanism and regulation of protein degradation in liver. Diabetes Metab Rev 5(1):49–70

    Article  PubMed  CAS  Google Scholar 

  • Mounier C, Posner BI (2006) Transcriptional regulation by insulin: from the receptor to the gene. Can J Physiol Pharmacol 84(7):713–724

    Article  PubMed  CAS  Google Scholar 

  • Nair KS, Ford GC, Ekberg K, Fernqvist-Forbes E, Wahren J (1995) Protein dynamics in whole body and in splanchnic and leg tissues in type I diabetic patients. J Clin Invest 95(6):2926–2937

    PubMed  CAS  Google Scholar 

  • Otani K, Han DH, Ford EL, Garcia-Roves PM, Ye H et al (2004) Calpain system regulates muscle mass and glucose transporter GLUT4 turnover. J Biol Chem 279(20):20915–20920

    Article  PubMed  CAS  Google Scholar 

  • Pacy PJ, Price GM, Halliday D, Quevedo MR, Millward DJ (1994) Nitrogen homeostasis in man: the diurnal responses of protein synthesis and degradation and amino acid oxidation to diets with increasing protein intakes. Clin Sci (Lond) 86(1):103–116

    CAS  Google Scholar 

  • Poso AR, Wert JJ Jr, Mortimore GE (1982) Multifunctional control of amino acids of deprivation-induced proteolysis in liver. Role of leucine. J Biol Chem 257(20):12114–12120

    PubMed  CAS  Google Scholar 

  • Price GM, Halliday D, Pacy PJ, Quevedo MR, Millward DJ (1994) Nitrogen homeostasis in man: influence of protein intake on the amplitude of diurnal cycling of body nitrogen. Clin Sci (Lond) 86(1):91–102

    CAS  Google Scholar 

  • Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC et al (2008) The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320(5882):1496–1501

    Article  PubMed  CAS  Google Scholar 

  • Schworer CM, Mortimore GE (1979) Glucagon-induced autophagy and proteolysis in rat liver: mediation by selective deprivation of intracellular amino acids. Proc Natl Acad Sci USA 76(7):3169–3173

    Article  PubMed  CAS  Google Scholar 

  • Seglen PO, Gordon PB, Poli A (1980) Amino acid inhibition of the autophagic/lysosomal pathway of protein degradation in isolated rat hepatocytes. Biochim Biophys Acta 630(1):103–118

    PubMed  CAS  Google Scholar 

  • Shaw RJ (2008) mTOR signaling: RAG GTPases transmit the amino acid signal. Trends Biochem Sci 33(12):565–568

    Article  PubMed  CAS  Google Scholar 

  • Stepien M, Gaudichon C, Azzout-Marniche D, Fromentin G, Tome D et al (2010) Postprandial nutrient partitioning but not energy expenditure is modified in growing rats during adaptation to a high-protein diet. J Nutr 140(5):939–945

    Article  PubMed  CAS  Google Scholar 

  • Thivierge MC, Bush JA, Suryawan A, Nguyen HV, Orellana RA et al (2005) Whole-body and hindlimb protein breakdown are differentially altered by feeding in neonatal piglets. J Nutr 135(6):1430–1437

    PubMed  CAS  Google Scholar 

  • Tischler ME, Desautels M, Goldberg AL (1982) Does leucine, leucyl-tRNA, or some metabolite of leucine regulate protein synthesis and degradation in skeletal and cardiac muscle? J Biol Chem 257(4):1613–1621

    PubMed  CAS  Google Scholar 

  • Tong JF, Yan X, Zhu MJ, Du M (2009) AMP-activated protein kinase enhances the expression of muscle-specific ubiquitin ligases despite its activation of IGF-1/Akt signaling in C2C12 myotubes. J Cell Biochem 108(2):458–468

    Article  PubMed  CAS  Google Scholar 

  • Waterlow JC (2006) The effects of food and hormones on protein turnover in the whole body and regions. Cabi Publishing, Wallingford, pp 120–141

    Google Scholar 

  • Wing SS, Banville D (1994) 14 kDa ubiquitin-conjugating enzyme: structure of the rat gene and regulation upon fasting and by insulin. Am J Physiol 267(1 Pt 1):39–48

    Google Scholar 

  • Wing SS, Goldberg AL (1993) Glucocorticoids activate the ATP-ubiquitin-dependent proteolytic system in skeletal muscle during fasting. Am J Physiol 264(4 Pt 1):668–676

    Google Scholar 

  • Wing SS, Haas AL, Goldberg AL (1995) Increase in ubiquitin-protein conjugates concomitant with the increase in proteolysis in rat skeletal muscle during starvation and atrophy denervation. Biochem J 307(Pt 3):639–645

    PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dalila Azzout-Marniche.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 52 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chotechuang, N., Azzout-Marniche, D., Bos, C. et al. Down-regulation of the ubiquitin–proteasome proteolysis system by amino acids and insulin involves the adenosine monophosphate-activated protein kinase and mammalian target of rapamycin pathways in rat hepatocytes. Amino Acids 41, 457–468 (2011). https://doi.org/10.1007/s00726-010-0765-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0765-2

Keywords

Navigation