Amino Acids

, Volume 40, Issue 4, pp 1027–1034 | Cite as

Mechanisms of insulin secretion in malnutrition: modulation by amino acids in rodent models

  • Camila Aparecida Machado de OliveiraEmail author
  • Márcia Queiroz Latorraca
  • Maria Alice Rostom de Mello
  • Everardo Magalhães Carneiro
Review Article


Protein restriction at early stages of life reduces β-cell volume, number of insulin-containing granules, insulin content and release by pancreatic islets in response to glucose and other secretagogues, abnormalities similar to those seen in type 2 diabetes. Amino acids are capable to directly modulate insulin secretion and/or contribute to the maintenance of β-cell function, resulting in an improvement of insulin release. Animal models of protein malnutrition have provided important insights into the adaptive mechanisms involved in insulin secretion in malnutrition. In this review, we discuss studies focusing on the modulation of insulin secretion by amino acids, specially leucine and taurine, in rodent models of protein malnutrition. Leucine supplementation increases insulin secretion by pancreatic islets in malnourished mice. This effect is at least in part due to increase in the expression of proteins involved in the secretion process, and the activation of the PI3K/PKB/mTOR pathway seems also to contribute. Mice supplemented with taurine have increased insulin content and secretion as well as increased expression of genes essential for β-cell functionality. The knowledge of the mechanisms through which amino acids act on pancreatic β-cells to stimulate insulin secretion is of interest for clinical medicine. It can reveal new targets for the development of drugs toward the treatment of endocrine diseases, in special type 2 diabetes.


Malnutrition Insulin secretion Amino acids Leucine Taurine 



The authors’ work is supported by the Brazilian foundations FAPESP, FAPEMAT, CAPES and CNPq.


  1. Aerts L, Van Assche FA (2002) Taurine and taurine-deficiency in the perinatal period. J Perinat Med 30:281–286PubMedCrossRefGoogle Scholar
  2. Ahrén B (2000) Autonomic regulation of islet hormone secretion—implications for health and disease. Diabetologia 43:393–410PubMedCrossRefGoogle Scholar
  3. Amaral AG, Rafacho A, Oliveira CAM, Batista TM, Ribeiro RA, Latorraca MQ, Boschero AC, Carneiro EM (2010) Leucine supplementation augments insulin secretion in pancreatic islets of malnourished mice. Pancreas (in press)Google Scholar
  4. Ämmälä C, Ashcroft FM, Rorsman P (1993) Calcium-independent potentiation of insulin release by cyclic AMP in single b-cells. Nature 363:356–358PubMedCrossRefGoogle Scholar
  5. Arantes VC, Teixeira VP, Reis MA, Latorraca MQ, Leite AR, Carneiro EM, Yamada AT, Boschero AC (2002) Expression of PDX-1 is reduced in pancreatic islets from pups of rat dams fed a low protein diet during gestation and lactation. J Nutr 132:3030–3035PubMedGoogle Scholar
  6. Araujo EP, Amaral ME, Filiputti E, De Souza CT, Laurito TL, Augusto VD, Saad MJ, Boschero AC, Velloso LA, Carneiro EM (2004) Restoration of insulin secretion in pancreatic islets of protein-deficient rats by reduced expression of insulin receptor substrate (IRS)-1 and IRS-2. J Endocrinol 181:25–38PubMedCrossRefGoogle Scholar
  7. Berridge MJ (1987) Inositol trisphosphate and diacylglycerol: two interacting second messengers. Annu Rev Biochem 56:159–193PubMedCrossRefGoogle Scholar
  8. Best L (2005) Glucose-induced electrical activity in rat pancreatic β-cells: dependence on intracellular chloride concentration. J Physiol 568(1):137–144Google Scholar
  9. Best L, Brown PD (2009) Studies of the mechanism of activation of the volume-regulated anion channel in rat pancreatic b-cells. J Membr Biol 230:83–91PubMedCrossRefGoogle Scholar
  10. Boujendar S, Arany E, Hill D, Remacle C, Reusens B (2003) Taurine supplementation of a low protein diet fed to rat dams normalizes the vascularization of the fetal endocrine pancreas. J Nutr 133:2820–2825PubMedGoogle Scholar
  11. Bratusch-Marrain PR, Komjati M, Waldhausl WK (1986) Efficacy of pulsatile versus continuous insulin administration on hepatic glucose production and glucose utilization in type I diabetic humans. Diabetes 35:922–926PubMedCrossRefGoogle Scholar
  12. Bustamante J, Lobo MT, Alonso FJ, Mukala NT, Giné E, Solís JM, Tamarit-Rodriguez J, Martín Del Río R (2001) An osmotic-sensitive taurine pool is localized in rat pancreatic islet cells containing glucagon and somatostatin. Am J Physiol Endocrinol Metab 281:E1275–E1285PubMedGoogle Scholar
  13. Carneiro EM, Mello MAR, Gobatto CA, Boschero AC (1995) Low protein diet impairs glucose-induced insulin secretion from and 45Ca uptake by pancreatic rat islets. J Nutr Biochem 6:314–318CrossRefGoogle Scholar
  14. Carneiro EM, Latorraca MQ, Araujo E, Beltrá M, Oliveras MJ, Navarro M, Berná G, Bedoya FJ, Velloso LA, Soria B, Martín F (2009) Taurine supplementation modulates glucose homeostasis and islet function. J Nutr Biochem 20:503–511PubMedCrossRefGoogle Scholar
  15. Cherif H, Reusen B, Dahri S, Remacle C, Hoet JJ (1996) Stimulatory effects of taurine on insulin secretion by foetal rat islets cultured in vitro. J Endocrinol 51:501–506CrossRefGoogle Scholar
  16. Cherif H, Reusens B, Ahn MT, Hoet JJ, Remacle C (1998) Effects of taurine on the insulin secretion of rat fetal islets from dams fed a low-protein diet. J Endocrinol 159:341–348PubMedCrossRefGoogle Scholar
  17. Collombat P, Hecksher-Sørensen J, Serup P, Mansouri A (2006) Specifying pancreatic endocrine cell fates. Mech Dev 123:501–512PubMedCrossRefGoogle Scholar
  18. Cooper DMF (2003) Regulation and organization of adenylyl cyclases and cAMP. Biochem J 375:517–529PubMedCrossRefGoogle Scholar
  19. da Silva PM, Zoppi CC, Filiputti E, Silveira LR, Quesada I, Boschero AC, Carneiro EM (2010) Leucine supplementation enhances glutamate dehydrogenase expression and restores glucose-induced insulin secretion in protein-malnourished rats. Metabolism 59:911–913PubMedCrossRefGoogle Scholar
  20. de Barros Reis MA, Arantes VC, Cunha DA, Latorraca MQ, Toyama MH, Carneiro EM, Boschero AC (2008) Increased L-CPT-1 activity and altered gene expression in pancreatic islets of malnourished adult rats: a possible relationship between elevated free fatty acid levels and impaired insulin secretion. J Nutr Biochem 19:85–90PubMedCrossRefGoogle Scholar
  21. de Mello MA, Cury L (1988) Maternal adaptations for fetal growth in Young malnourished rats. Braz J Med Biol Res 21:1053–1056Google Scholar
  22. de Mello MA, Cury L (1989) Effects of protein-calorie malnutrition on endocrine pancreatic function in young pregnant rats. Braz J Med Biol Res 22:791–794Google Scholar
  23. de Mello MA, Luciano E, Carneiro E, Latorraca MQ, Machado de Oliveira CA, Boschero AC (2003) Glucose homeostasis in pregnant rats submitted to dietary protein restriction. Res Commun Mol Pathol Pharmacol 113–114:229–246PubMedGoogle Scholar
  24. Delguingaro-Augusto V, Ferreira F, Bordin S, do Amaral ME, Toyama MH, Boschero AC, Carneiro EM (2004) A low protein diet alters gene expression in rat pancreatic islets. J Nutr 134:321–327Google Scholar
  25. Delmeire D, Flamez D, Hinke SA, Cali JJ, Pipeleers D, Schuit F (2003) Type VIII adenylyl cyclase in rat beta cells: coincidence signal detector/generator for glucose and GLP-1. Diabetologia 46:1383–1393PubMedCrossRefGoogle Scholar
  26. Dickson LM, Rhodes CJ (2004) Pancreatic beta-cell growth and survival in the onset of type 2 diabetes: a role for protein kinase B in the Akt? Am J Physiol Endocrinol Metab 287:E192–E198PubMedCrossRefGoogle Scholar
  27. Eizirik DL, Sandler S, Palmer JP (1993) Repair of pancreatic b-cells: a relevant phenomenon in early IDDM? Diabetes 42:1383–1391PubMedCrossRefGoogle Scholar
  28. Fatrai S, Elghazi L, Balcazar N, Cras-Méneur C, Krits I, Kiyokawa H, Bernal-Mizrachi E (2006) Akt induces beta-cell proliferation by regulating cyclin D1, cyclin D2, and p21 levels and cyclin-dependent kinase-4 activity. Diabetes 55:318–325PubMedCrossRefGoogle Scholar
  29. Ferreira F, Filiputti E, Arantes VC, Stoppiglia LF, Araújo EP, Delghingaro-Augusto V, Latorraca MQ, Toyama MH, Boschero AC, Carneiro EM (2003) Decreased cholinergic stimulation of insulin secretion by islets from rats fed a low protein diet is associated with reduced protein kinase c alpha expression. J Nutr 133:695–699PubMedGoogle Scholar
  30. Ferreira F, Barbosa HC, Stoppiglia LF, Delghingaro-Augusto V, Pereira EA, Boschero AC, Carneiro EM (2004) Decreased insulin secretion in islets from rats fed a low protein diet is associated with a reduced PKAalpha expression. J Nutr 134:63–67PubMedGoogle Scholar
  31. Filiputti E, Ferreira F, Souza KL, Stoppiglia LF, Arantes VC, Boschero AC, Carneiro EM (2008) Impaired insulin secretion and decreased expression of the nutritionally responsive ribosomal kinase protein S6K-1 in pancreatic islets from malnourished rats. Life Sci 82:542–548PubMedCrossRefGoogle Scholar
  32. Filiputti E, Rafacho A, Araújo EP, Silveira LR, Trevisan A, Batista TM, Curi R, Velloso LA, Quesada I, Boschero AC, Carneiro EM (2010) Augmentation of insulin secretion by leucine supplementation in malnourished rats: possible involvement of the phosphatidylinositol 3-phosphate kinase/mammalian target protein of rapamycin pathway. Metabolism 59:635–644PubMedCrossRefGoogle Scholar
  33. Flatt PR (1996) Hormonal and neural control of endocrine pancreatic function. In: Pickup JC, Williams G (eds) Textbook of diabetes. Blackwell, Oxford, pp 9.1–9.7Google Scholar
  34. Gao Z, Young RA, Li G, Najafi H, Buettger C, Sukumvanich SS, Wong RK, Wolf BA, Matschinsky FM (2003) Distinguishing features of leucine and alpha-ketoisocaproate sensing in pancreatic beta-cells. Endocrinology 144:1949–1957PubMedCrossRefGoogle Scholar
  35. Gremlich S, Bonny C, Waeber G, Thorens B (1997) Fatty acids decrease IDX-1 expression in rat pancreatic islets and reduce GLUT2, glucokinase, insulin, and somatostatin levels. J Biol Chem 272:30261–30269PubMedCrossRefGoogle Scholar
  36. Gylfe E (1976) Comparison of the effects of leucines, non-metabolizable leucine analogues and other insulin secretagogues on the activity of glutamate dehydrogenase. Acta Diabetol Lat 13:20–24PubMedCrossRefGoogle Scholar
  37. Hales CN, Barker DJ (1992) Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 35:595–601PubMedCrossRefGoogle Scholar
  38. Han J, Bae JH, Kim SY, Lee HY, Jang BC, Lee IK, Cho CH, Lim JG, Suh SI, Kwon TK, Park JW, Ryu SY, Ho WK, Earm YE, Song DK (2004) Taurine increases glucose sensitivity of UCP2-overexpressing β-cells by ameliorating mitochondrial metabolism. Am J Physiol Endocrinol Metab 287:E1008–E1018PubMedCrossRefGoogle Scholar
  39. Hansen L, Urioste S, Petersen HV, Jensen JN, Eiberg H, Barbetti F, Serup P, Hansen T, Pedersen O (2000) Missense mutations in the human insulin promoter factor-1 gene and their relation to maturity-onset diabetes of the young and late-onset type 2 diabetes mellitus in caucasians. J Clin Endocrinol Metab 85:1323–1326PubMedCrossRefGoogle Scholar
  40. Hellman B (2009) Pulsatility of insulin release—a clinically important phenomenon. Ups J Med Sci 114:193–205PubMedCrossRefGoogle Scholar
  41. Henquin JC, Jonas JC, Gilon P (1998) Functional significance of Ca2+ oscillations in pancreatic β cells. Diabetes Metab 24:30–36PubMedGoogle Scholar
  42. Herchuelz A, Lebrun P, Boschero AC, Malaisse WJ (1984) Mechanism of arginine-stimulated Ca2+ influx into pancreatic B cell. Am J Physiol 246:E38–E43PubMedGoogle Scholar
  43. Kalbe L, Leunda A, Sparre T, Meulemans C, Ahn MT, Orntoft T, Kruhoffer M, Reusens B, Nerup J, Remacle C (2005) Nutritional regulation of proteases involved in fetal rat insulin secretion and islet cell proliferation. Br J Nutr 93:309–316PubMedCrossRefGoogle Scholar
  44. Kaneto H, Miyatsuka T, Kawamori D, Yamamoto K, Kato K, Shiraiwa T, Katakami N, Yamasaki Y, Matsuhisa M, Matsuoka TA (2008) PDX-1 and MafA play a crucial role in pancreatic beta-cell differentiation and maintenance of mature beta-cell function. Endocr J 55:235–252PubMedCrossRefGoogle Scholar
  45. Kaplan B, Karabay G, Zagyapan RD, Ozer C, Sayan H, Duyar I (2004) Effect of taurine in glucose and taurine administration. Amino Acids 27:327–333PubMedCrossRefGoogle Scholar
  46. Koster JC, Permutt MA, Nichols CG (2005) Diabetes and insulin secretion: the ATP-sensitive K+ channel (K ATP) connection. Diabetes 54:3065–3072PubMedCrossRefGoogle Scholar
  47. Kulkarni RN (2004) The islet beta-cell. Int J Biochem Cell Biol 36:365–371PubMedCrossRefGoogle Scholar
  48. Lapson WG, Kramer JH, Schaffer SW (1983) Potentiation of the actions of insulin by taurine. Can J Physiol Pharmacol 61:457–463Google Scholar
  49. Larsson-Nyrén G, Grapengiesser E, Hellman B (2007) Phospholipase A2 is important for glucose induction of rhythmic Ca2+ signals in pancreatic b cells. Pancreas 35:173–179PubMedCrossRefGoogle Scholar
  50. Latorraca MQ, Carneiro EM, Boschero AC, Mello MA (1998a) Protein deficiency during pregnancy and lactation impairs glucose-induced insulin secretion but increases the sensitivity to insulin in weaned rats. Br J Nutr 80:291–297PubMedGoogle Scholar
  51. Latorraca MQ, Reis MA, Carneiro EM, Mello MA, Velloso LA, Saad MJ, Boschero AC (1998b) Protein deficiency and nutritional recovery modulate insulin secretion and the early steps of insulin action in rats. J Nutr 128:1643–1649PubMedGoogle Scholar
  52. Latorraca MQ, Carneiro EM, Mello MA, Boschero AC (1999) Reduced insulin secretion in response to nutrients in islets from malnourished young rats is associated with a diminished calcium uptake. J Nutr Biochem 10:37–43PubMedCrossRefGoogle Scholar
  53. Lee SH, Lee HY, Kim SY, Lee IK, Song DK (2004) Enhancing effect of taurine on glucose response in UCP2-overexpressing beta cells. Diabetes Res Clin Pract 66:S69–S74PubMedCrossRefGoogle Scholar
  54. León DD, Stanley CA (2007) Mechanisms of disease: advances in diagnosis and treatment of hyperinsulinism in neonates. Nat Clin Pract Endocrinol Metab 3:57–68PubMedCrossRefGoogle Scholar
  55. Leon-Quinto T, Magnan C, Portha B (1998) Altered activity of the autonomous nervous system as a determinant of the impaired beta-cell secretory response after protein-energy restriction in the rat. Endocrinology 139:3382–3389PubMedCrossRefGoogle Scholar
  56. Li C, Buettger C, Kwagh J, Matter A, Daikhin Y, Nissim IB, Collins HW, Yudkoff M, Stanley CA, Matschinsky FM (2004) A signaling role of glutamine in insulin secretion. J Biol Chem 279:13393–13401PubMedCrossRefGoogle Scholar
  57. Liu YJ, Grapengiesser E, Gylfe E, Hellman B (1996) Crosstalk between the cAMP and inositol trisphosphate signalling pathways in pancreatic b-cells. Arch Biochem Biophys 334:295–302PubMedCrossRefGoogle Scholar
  58. Macfarlane WM, Frayling TM, Ellard S, Evans JC, Allen LI, Bulman MP, Ayres S, Shepherd M, Clark P, Millward A, Demaine A, Wilkin T, Docherty K, Hattersley AT (1999) Missense mutations in the insulin promoter factor-1 gene predispose to type 2 diabetes. J Clin Invest 104:R33–R39PubMedCrossRefGoogle Scholar
  59. Matthews DR, Naylor BA, Jones RG, Ward GM, Turner RC (1983) Pulsatile insulin has greater hypoglycaemic effects than continuous delivery. Diabetes 32:617–621PubMedCrossRefGoogle Scholar
  60. Maturo J, Kulakowski EC (1988) Taurine binding to the purified insulin receptor. Biochem Pharmacol 37:755–760CrossRefGoogle Scholar
  61. McClenaghan NH, Barnett CR, Flatt PR (1998) Na+ cotransport by metabolizable and nonmetabolizable amino acids stimulates a glucose-regulated insulin-secretory response. Biochem Biophys Res Commun 249:299–303PubMedCrossRefGoogle Scholar
  62. Menge BA, Schrader H, Ritter PR, Ellrichmann M, Uhl W, Schmidt WE, Meier JJ (2010) Selective amino acid deficiency in patients with impaired glucose tolerance and type 2 diabetes. Regul Pept 160:75–80PubMedCrossRefGoogle Scholar
  63. Merezak S, Hardikar AA, Yajnik CS, Remacle C, Reusens B (2001) Intrauterine low protein diet increases foetal beta-cell sensitivity to NO and IL-1 beta: the protective role of taurine. J Endocrinol 171:299–308PubMedCrossRefGoogle Scholar
  64. Milanski M, Arantes VC, Ferreira F, de Barros Reis MA, Carneiro EM, Boschero AC, Collares-Buzato CB, Latorraca MQ (2005) Low-protein diets reduce PKAalpha expression in islets from pregnant rats. J Nutr 135:1873–1878PubMedGoogle Scholar
  65. Nakaya Y, Minami A, Harada N, Sakamoto S, Niwa Y, Ohnaka M (2000) Taurine improves insulin sensitivity in the Otsuka Long-Evans Tokushima Fatty rat, a model of spontaneous type 2 diabetes. Am J Clin Nutr 71:54–58PubMedGoogle Scholar
  66. Newsholme P, Brennan L, Bender K (2006) Amino acid metabolism, b-cell function and diabetes. Diabetes 55:S39–S47CrossRefGoogle Scholar
  67. Niwa T, Matsukawa Y, Senda T, Nimura Y, Hidaka H, Niki I (1998) Acetylcholine activates intracellular movement of insulin granules in pancreatic beta-cells via inositol triphosphate-dependent mobilization of intracellular Ca2+. Diabetes 47:1699–1706PubMedCrossRefGoogle Scholar
  68. Orci L (1985) The insulin factory: a tour of the plant surroundings, a visit to the assembly line. The Minkowski lecture 1973 revisited. Diabetologia 28:528–546PubMedCrossRefGoogle Scholar
  69. Park EJ, Bae JH, Kim SY, Lim JG, Baek WK, Kwon TK, Suh SI, Park JW, Lee IK, Ashcroft FM, Song DK (2004) Inhibition of ATP-sensitive K+ channels by taurine through a benzamido-binding site on sulfonylurea receptor 1. Biochem Pharmacol 67:1089–1096PubMedCrossRefGoogle Scholar
  70. Reeves PG, Nielsen FH, Fahey GC (1993) AIN-93 purified diets for laboratory rodents: report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the SIN-76A rodent diet. J Nutr 123:1939–1951PubMedGoogle Scholar
  71. Reis MA, Carneiro EM, Mello MA, Boschero AC, Saad MJ, Velloso LA (1997) Glucose-induced insulin secretion is impaired and insulin-induced phosphorylation of the insulin receptor and insulin receptor substrate-1 are increased in protein-deficient rats. J Nutr 127:403–410PubMedGoogle Scholar
  72. Ribeiro RA, Bonfleur ML, Amaral AG, Vanzela EC, Rocco SA, Boschero AC, Carneiro EM (2009) Taurine supplementation enhances nutrient-induced insulin secretion in pancreatic mice islets. Diabetes Metab Res Rev 25:370–379PubMedCrossRefGoogle Scholar
  73. Schuller-Levis GB, Park E (2003) Taurine: new implications for an old amino acid. FEMS Microbiol Lett 226:195–202PubMedCrossRefGoogle Scholar
  74. Sener A, Malaisse WJ (1980) l-Leucine and a nonmetabolized analogue activate pancreatic islet glutamate dehydrogenase. Nature 288:187–189PubMedCrossRefGoogle Scholar
  75. Sener A, Malaisse WJ (2002) The stimulus-secretion coupling of amino acid-induced insulin release: insulinotropic action of L-alanine. Biochim Biophys Acta 1573:100–104PubMedGoogle Scholar
  76. Sener A, Best LC, Yates AP, Kadiata MM, Olivares E, Louchami K, Jijakli H, Ladriere L, Malaisse WJ (2000) Stimulus-secretion coupling of arginine-induced insulin release: comparison between the cationic amino acid and its methyl ester. Endocrine 13:329–340PubMedCrossRefGoogle Scholar
  77. Soria B, Martin F (1998) Cytosolic calcium oscillations and insulin release in pancreatic islets of Langerhans. Diabetes Metab 24:37–40PubMedGoogle Scholar
  78. Soriano S, Gonzalez A, Marroquí L, Tudurí E, Vieira E, Amaral AG, Batista TM, Rafacho A, Boschero AC, Nadal A, Carneiro EM, Quesada I (2010) Reduced insulin secretion in protein malnourished mice is associated to multiple failures in the beta-cell stimulus-secretion coupling. Endocrinology, Jun 16 [Epub ahead of print]Google Scholar
  79. Swenne I, Borg LA, Crace CJ, Schnell Landström A (1992) Persistent reduction of pancreatic beta-cell mass after a limited period of protein-energy malnutrition in the young rat. Diabetologia 35:939–945PubMedCrossRefGoogle Scholar
  80. Takahashi N, Kadowaki T, Yazaki Y (1997) Multiple exocytotic pathways in pancreatic beta cells. J Cell Biol 138:55–64PubMedCrossRefGoogle Scholar
  81. Tengholm A, Gylfe E (2009) Oscillatory control of insulin secretion. Mol Cel Endocrinol 297:58–72CrossRefGoogle Scholar
  82. Thomas G, Hall MN (1997) TOR signalling and control of cell growth. Curr Opin Cell Biol 9:782–787PubMedCrossRefGoogle Scholar
  83. Tom A, Nair KS (2006) Assessment of branched-chain amino acid status and potential for biomarkers. J Nutr 136:S324–S330Google Scholar
  84. Tsuboyama-Kasaoka M, Shozawa C, Sano K (2006) Taurine (2-aminoethanesulfonic acid) deficiency creates a vicious circle promoting obesity. Endocrinology 147:3276–3284PubMedCrossRefGoogle Scholar
  85. Um SH, Frigerio F, Watanabe M, Picard F, Joaquin M, Sticker M, Fumagalli S, Allegrini PR, Kozma SC, Auwerx J, Thomas G (2004) Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 431:200–205PubMedCrossRefGoogle Scholar
  86. Valverde I, Vandermeers A, Anjaneyulu R, Malaisse WJ (1979) Calmodulin activation of adenylate cyclase in pancreatic islets. Science 206:225–227PubMedCrossRefGoogle Scholar
  87. Velloso LA, Carneiro EM, Crepaldi SC, Boschero AC, Saad MJ (1995) Glucose- and insulin-induced phosphorylation of the insulin receptor and its primary substrates IRS-1 and IRS-2 in rat pancreatic islets. FEBS Lett 377:353–357PubMedCrossRefGoogle Scholar
  88. Ventrucci G, Mello MAR, Gomes-Marcondes MCC (2007) Leucine-rich diet alters the eukaryotic translation initiation factors expression in skeletal muscle of tumour-bearing rats. BMC Cancer (online) 7:42CrossRefGoogle Scholar
  89. Verspohl EJ, Herrmann K (1996) Involvement of G proteins in the effect of carbachol and cholecystokinin in rat pancreatic islets. Am J Physiol 271:E65–E72PubMedGoogle Scholar
  90. Wierup N, Svensson H, Mulder H, Sundler F (2002) The ghrelin cell: a novel developmentally regulated islet cell in the human pancreas. Regul Pept 107:63–69PubMedCrossRefGoogle Scholar
  91. Xu G, Kwon G, Cruz WS, Marshall CA, McDaniel ML (2001) Metabolic regulation by leucine of translation initiation through the mTOR signaling pathway by pancreatic beta-cells. Diabetes 50:353–360PubMedCrossRefGoogle Scholar
  92. Yu W, Niwa T, Fukasawa T, Hidaka H, Senda T, Sasaki Y, Niki Y (2000) Synergism of protein kinase A, protein kinase C, and myosin light-chain kinase in the secretory cascade of the pancreatic B-cell. Diabetes 49:945–952PubMedCrossRefGoogle Scholar
  93. Zawalich WS, Diaz VA, Zawalich KC (1988) Influence of cAMP and calcium on [3H]inositol efflux, inositol phosphate accumulation, and insulin release from isolated rat islets. Diabetes 37:1478–1483PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Camila Aparecida Machado de Oliveira
    • 1
    • 4
    Email author
  • Márcia Queiroz Latorraca
    • 2
  • Maria Alice Rostom de Mello
    • 3
  • Everardo Magalhães Carneiro
    • 1
  1. 1.Departamento de Anatomia, Biologia Celular, Fisiologia e BiofísicaUniversidade Estadual de Campinas (UNICAMP)CampinasBrazil
  2. 2.Departamento de Alimentos e Nutrição, Faculdade de NutriçãoUniversidade Federal de Mato Grosso (UFMT)CuiabáBrazil
  3. 3.Departamento de Educação FísicaUniversidade Estadual Paulista (UNESP)Rio ClaroBrazil
  4. 4.Departamento de BiociênciasUniversidade Federal de São Paulo (Unifesp) Campus Baixada SantistaSantosBrazil

Personalised recommendations