Skip to main content
Log in

The efficient synthesis of isotopically labeled peptide-derived Amadori products and their characterization

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Protein glycation is often a cause of diabetes-associated complications. The isotopically labeled peptide-derived Amadori products may serve as standards for quantitative determination of the glycated proteins. In this paper, we discussed various approaches to the synthesis of Amadori products labeled selectively with stable isotopes 2H, 13C and 18O.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amadori M (1929) The product of the condensation of glucose and p-phenetidine. Atti Reale Accad Nazl Lincei 9:68–73

    CAS  Google Scholar 

  • Baynes JW, Thorpe SR (1999) Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes 48:1–9

    Article  CAS  PubMed  Google Scholar 

  • Carganico S, Rovero P, Halperin JA et al (2009) Building blocks for the synthesis of post-translationally modified glycated peptides and proteins. J Pept Sci 15:67–71

    Article  CAS  PubMed  Google Scholar 

  • Choi BK, Hercules DM, Gusev AI (2001) Effect of liquid chromatography separation of complex matrices on liquid chromatography-tandem mass spectrometry signal suppression. J Chromatogr A 907:337–342

    Article  CAS  PubMed  Google Scholar 

  • Cohen MP, Ziyadeh FN, Chen S (2006) Amadori-modified glycated serum proteins and acceleratedatherosclerosis in diabetes: pathogenic and therapeutic implications. J Lab Clin Med 147:211–219

    Article  CAS  PubMed  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    Article  CAS  PubMed  Google Scholar 

  • Delatour T (2004) Performance of quantitative analyses by liquid chromatography–electrospray ionisation tandem mass spectrometry: from external calibration to isotopomer-based exact matching. Anal Bioanal Chem 380:515–523

    Article  CAS  PubMed  Google Scholar 

  • Delatour T, Fenaille F, Parisod Arce Vera VF, Buetler T (2006) Synthesis, tandem MS- and NMR-based characterization, and quantification of the carbon 13-labeled advanced glycation endproduct, 6-N-carboxymethyllysine. Amino Acids 30:25–34

    Article  CAS  PubMed  Google Scholar 

  • Delatour T, Hegele J, Parisod V, Richoz J, Maurer S, Steven M, Buetler T (2009) Analysis of advanced glycation endproducts in dairy products by isotope dilution liquid chromatography-electrospray tandem mass spectrometry. The particular case of carboxymethyllysine. J Chromatogr A 1216:2371–2381

    Article  CAS  PubMed  Google Scholar 

  • Forrow NJ, Batchelor MJ (1990) Synthesis of the N-glycopeptidepartial sequence A(1)-A(12) of the β-chain of glycosylated hemoglobin HBA1C—a new approach to Amadori N-glycopeptides. Tetrahedron 31:3493–3494

    Article  CAS  Google Scholar 

  • Frolov A, Hoffmann P, Hoffmann R (2006a) Fragmentation behavior of glycated peptides derived from d-glucose. d-Fructose and d-ribose in tandem mass spectrometry. J Mass Spectrom 41:1459

    Article  CAS  PubMed  Google Scholar 

  • Frolov A, Singer D, Hoffmann R (2006b) Site-specific synthesis of Amadori-modified peptides on solid phase. J Pept Sci 12:389–395

    Article  CAS  PubMed  Google Scholar 

  • Frolov A, Singer D, Hoffmann R (2007) Solid-phase synthesis of glucose-derived Amadori peptides. J Pept Sci 13:862–867

    Article  CAS  PubMed  Google Scholar 

  • Goddard TD, Kneller DG (2003) SPARKY 3. University of California, San Francisco

    Google Scholar 

  • Horvat S, Jakas A (2004) Peptide and amino acid glycation: new insights into the Maillard reaction. J Pept Sci 10:119–137

    Article  CAS  PubMed  Google Scholar 

  • Huyghesy-Despointes A, Yaylayan VA (1996) Retro-aldol and redox reactions of Amadori compounds: mechanistic studies with variously labeled d-[13C]glucose. J Agric Food Chem 44:672–681

    Article  Google Scholar 

  • Ikonomou MG, Blades AT, Kebarle P (1990) Investigations of the electrospray interface for liquid chromatography/mass spectrometry. Anal Chem 62:957–967

    Article  CAS  Google Scholar 

  • Jeric I, Versluis C, Horvat S, Heck AJR (2002) Tracing glycoprotein structures: electron ionization tandem mass spectrometric analysis of sugar-peptide adducts. J Mass Spectrom 37:803–811

    Article  CAS  PubMed  Google Scholar 

  • Kuhn R, Weygand F (1937) The Amadori rearrangement. Ber 70:769–772

    Google Scholar 

  • Mega TL, Cortes S, Van Etten RL (1990) The 18O isotope shift in 13C nuclear magnetic resonance spectroscopy. 13. Oxygen exchange at the anomeric carbon of d-glucose, d-mannose and-fructose. J Org Chem 55:522–528

    Article  CAS  Google Scholar 

  • Monnier VM (1989) Toward a Maillard reaction theory of aging. Prog Clin Biol Res 304:1–22

    CAS  PubMed  Google Scholar 

  • Priego-Capote F, Scherl A, Müller M, Waridel P, Lisacek F, Sanchez J-C (2010) Glycation Isotopic labeling with 13C-reducing sugars for quantitative analysis of glycated proteins in human plasma. Mol Cell Proteomics 9:579–592

    Google Scholar 

  • Roper H, Roper S, Heyns K, Meyer B (1983) N.M.R. spectroscopy of N-(1-deoxy-d-fructos-1-yl)-l-amino acids (fructose-amino acids). Carbohydrate Res 116:183–195

    Article  Google Scholar 

  • Stefanowicz P, Kapczynska K, Kluczyk A, Szewczuk Z (2007) A new procedure for the synthesis of peptide-derived Amadori products on a solid support. Tetrahedron Lett 48:967–969

    Article  CAS  Google Scholar 

  • Stefanowicz P, Kapczynska K, Jaremko M, Jaremko L, Szewczuk Z (2009) A mechanistic study on the fragmentation of peptide-derived Amadori products. J Mass Spectrom 44:1500–1508

    Article  CAS  PubMed  Google Scholar 

  • Stefanowicz P, Kijewska M, Kapczynska K, Szewczuk Z (2010a) Methods of the site-selective solid phase synthesis of peptide-derived Amadori products. Amino Acids 38:881–889

    Article  CAS  PubMed  Google Scholar 

  • Stefanowicz P, Kijewska M, Kluczyk A, Szewczuk Z (2010b) Detection of glycation sites in proteins by high-resolution mass spectrometry combined with isotopic labeling. Anal Biochem 400:237–243

    Article  CAS  PubMed  Google Scholar 

  • Stefanowicz P, Batorska J, Kijewska M, Bartosz-Bechowski H, Szewczuk Z, Lis T (2010c) Hydrate of 2, 3:4, 5-di-O-isopropylidene-β-d-arabino-hexos-2-ulo-2, 6-pyranose as new crystalline reagent in the preparation of Amadori derived peptides. Cent Eur J Chem 8:28–33

    Article  CAS  Google Scholar 

  • Thorpe SR, Baynes JW (1996) Role of the Maillard reaction in diabetes mellitus and diseases of aging. Drugs Aging 9:69–77

    Article  CAS  PubMed  Google Scholar 

  • Ulrich P, Cerami A (2001) Protein glycation, diabetes, and aging. Recent Prog Horm Res 56:1–21

    Article  CAS  PubMed  Google Scholar 

  • Wuthrich K (1986) NMR of proteins and nucleic acids. Wiley, New York

    Google Scholar 

  • Zhang M, Kho AL, Anilkumar N, Chibber R, Pagano PJ, Shah AM, Cave AC (2006) Glycated proteins stimulate reactive oxygen species production in cardiac myocytes: involvement of Nox2 (gp91phox)-containing NADPH oxidase. Circulation 113:1235–1243

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research for this paper was supported by the EU through the European Social Fund, project number POKL.04.01.01-00-072/09 (for L.J.) and by Grant No. N N401 222734 from the Ministry of Science and Higher Education of Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Stefanowicz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 121 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kapczyńska, K., Stefanowicz, P., Jaremko, Ł. et al. The efficient synthesis of isotopically labeled peptide-derived Amadori products and their characterization. Amino Acids 40, 923–932 (2011). https://doi.org/10.1007/s00726-010-0714-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0714-0

Keywords

Navigation