Skip to main content

Advertisement

Log in

Immunomodulatory activities of a new pentapeptide (Bursopentin) from the chicken bursa of Fabricius

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The bursa of Fabricius (BF) is a central immune organ in birds, and some peptides from chicken BF have demonstrated important immune functions. Here, a new 626.27 Da pentapeptide, Bursopentin (BP5, Cys-Lys-Arg-Val-Tyr) was isolated and purified by reverse-phase high-performance liquid chromatography. In this study, we examined the effects of BP5 on antigen-specific immune response in BALB/c mice sensitized with inactivated avian influenza virus (AIV) [A/Duck/Jiangsu/NJ08/05 (AIV H9N2 subtype)]. The results suggested that BP5 enhanced anti-hemagglutinin antibody (IgG, the isotypes IgG1 and IgG2a) production, induced both of Th1- (IL-2 and IFN-γ) and Th2-type (IL-4 and -10) cytokines, increased proliferations of splenic lymphocyte subsets CD4+ T cells (CD3+CD4+), CD8+ T cells (CD3+CD8+) and B cells, and enhanced cytotoxic T-lymphocyte activity of the activated splenocytes against NIH3T3 cells. The effects of BP5 on the proliferation of isolated T- and/or B-cell populations of BALB/c mice were assessed, and the data suggested that BP5 promoted spleen lymphocyte proliferation by activating B cells directly and T cells indirectly. Further analysis revealed that B-lymphocyte proliferation induced by BP5 is mediated by reactive oxygen species generated from thiol auto-oxidation of BP5. Furthermore, our data indicated that protein kinase C, mitogen-activated protein kinase, and nuclear factor kappa B are involved in the signal transductions during the BP5-induced B lymphocyte proliferation. This study indicates that BP5 could be a potential immunomodulator for future immuno-pharmacological use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abiko T, Sekino H (1995) Synthesis and effect of bursin and its analogs on the reduced B lymphocytes of uremic patients. Biotechnol Ther 5:163–170

    CAS  Google Scholar 

  • Aguillon JC, Escobar A, Ferreira V, Aguirre A, Ferreira L, Molina MC, Ferreira A (2001) Daily production of human tumor necrosis factor in lipopolysaccharide (LPS)-stimulated ex vivo blood culture assays. Eur Cytokine Netw 12(1):105–110

    CAS  PubMed  Google Scholar 

  • Akashi T, Nagafuchi S, Anzai K, Kitamura D, Wang J, Taniuchi I, Niho Y, Watanabe T (1998) Proliferation of CD3+B220+ single-positive normal T cells was suppressed in B-cell-deficient lpr mice. Immunology 93:238–248

    Article  CAS  PubMed  Google Scholar 

  • Audhya T, Kroon D, Heavner G, Viamontes G, Goldstein G (1986) Tripeptide structure of bursin, a selective B-cell-differentiating hormone of the Bursa of Fabricius. Science 231:997–999

    Article  CAS  PubMed  Google Scholar 

  • Audhya T, Kroon DJ, Heavner GA, Goldstein G (1988) B-cell differentiating peptides. US Patent NO. 4,783,442

  • Belardelli F (1995) Role of interferons and other cytokines in the regulation of the immune response. APMIS 103:161–179

    Article  CAS  PubMed  Google Scholar 

  • Bennink JR, Yewdell JW, Smith GL, Moss B (1986) Recognition of cloned influenza virus hemagglutinin gene products by cytotoxic T lymphocytes. J Virol 57(3):786–791

    CAS  PubMed  Google Scholar 

  • Blackwell TS, Black TR, Holden EP, Christman BW, Christman JW (1996) In vivo antioxidant treatment suppresses nuclear factor-kB activation and neutrophilic lung inflammation. J Immunol 157:1630–1637

    CAS  PubMed  Google Scholar 

  • Caldwell DJ, Dean CE, McElroy AP, Caldwell DY, Hargis BM (1999) Bursal anti-steroidogenic peptide (BASP): modulation of mitogen-stimulated bursal-lymphocyte DNA synthesis. Comp Biochem Physiol A Mol Integr Physiol 123(4):385–391

    Article  CAS  PubMed  Google Scholar 

  • Chang L, Karin M (2001) Mammalian MAP kinase signalling cascades. Nature 410:37–40

    Article  CAS  PubMed  Google Scholar 

  • Chong MM, Metcalf D, Jamieson E, Alexander WS, Kay TW (2005) Suppressor of cytokine signaling-1 in T cells and macrophages is critical for preventing lethal inflammation. Blood 106:1668–1675

    Article  CAS  PubMed  Google Scholar 

  • Constant SL (1999) B lymphocytes as antigen-presenting cells for CD4+ T cell priming in vivo. J Immunol 162:5695–5703

    CAS  PubMed  Google Scholar 

  • Cooper MD, Peterson RD, South MA, Good RA (1966) The functions of the thymic system and the bursa system in the chicken. J Exp Med 123:75–102

    Article  CAS  PubMed  Google Scholar 

  • Dröge W, Breitkreutz R (2000) Glutathione and immune function. Proc Nutr Soc 59:595–600

    PubMed  Google Scholar 

  • Evans DE, Munks MW, Purkerson JM, Parker DC (2000) Resting B lymphocytes as APC for naRve T lymphocytes: dependence on CD40 ligand/CD40. J Immunol 164:688–697

    CAS  PubMed  Google Scholar 

  • Farrar MA, Schreiber RD (1993) The molecular cell biology of interferon-γ and its receptor. Annu Rev Immunol 11:571–611

    Article  CAS  PubMed  Google Scholar 

  • Gambera L, Campanella G, Piomboni P, Serafini F, Morgante G, De Leo V (2007) Association of antioxidants and natural immune activators in the treatment of astheno-teratospermia and abacterial leukocytosis. Minerva Ginecol 59:473–479

    CAS  PubMed  Google Scholar 

  • Garcia-Espinosa G, Clerens S, Arckens L, Erf GF, Tellez G, Hargis BM (2008) Peptides from the Bursa of Fabricius associated with suppression of mitogen stimulated DNA-synthesis in Bursa of Fabricius cells belong to intracellular proteins. Int J Poult Sci 7:125–128

    Article  CAS  Google Scholar 

  • García-Espinosa G, Moore RW, Berghman LR, Hargis BM (2002) Relationship of bursal anti-steroidogenic peptide (BASP) and histone H1. Life Sci 71(26):3071–3079

    Article  PubMed  Google Scholar 

  • Glick B, Chang TS, Jaap RG (1956) The bursa of Fabricius and antibody production. Poult Sci 35:224–226

    Google Scholar 

  • Hauge S, Madhun A, Cox RJ, Haaheim LR (2007) Quality and kinetics of the antibody response in mice after three different low-dose influenza virus vaccination strategies. Clin Vaccine Immunol 14(8):978–983

    Article  CAS  PubMed  Google Scholar 

  • Hoshi S, Goto M, Koyama N, Nomoto K, Tanaka H (2000) Regulation of vascular smooth muscle cell proliferation by nuclear factor-κB and its inhibitor, I-κB. J Biol Chem 275:883–889

    Article  CAS  PubMed  Google Scholar 

  • Ishii T, Sugita Y, Bannai S (1987) Regulation of glutathione levels in mouse spleen lymphocytes by transport of cysteine. J Cell Physiol 133:330–336

    Article  CAS  PubMed  Google Scholar 

  • Iwata S, Hori T, Sato N, Ueda-Taniguchi Y, Yamabe T, Nakamura H, Masutani H, Yodoi J (1994) Thiol-mediated redox regulation of lymphocyte proliferation. Possible involvement of adult T cell leukemia-derived factor and glutathione in transferrin receptor expression. J Immunol 152:5633–5642

    CAS  PubMed  Google Scholar 

  • Julius M, Lang CA, Gleiberman L, Harburg E, DiFranceisco W, Schork A (1994) Glutathione and morbidity in a community-based sample of elderly. J Clin Epidemiol 47:1021–1026

    Article  CAS  PubMed  Google Scholar 

  • Kaplan D (1996) Autocrine secretion and the physiological concentration of cytokines. Immunol Today 17(7):303–304

    Article  CAS  PubMed  Google Scholar 

  • Lafuente MJ, Martin P, Garcia-Cao I, Diaz-Meco MT, Serrano M, Moscat J (2003) Regulation of mature T lymphocyte proliferation and differentiation by Par-4. EMBO J 22:4689–4698

    Article  CAS  PubMed  Google Scholar 

  • Lassila O, Lambris JD, Gisler RH (1989) A role for Lys-His-Gly-NH2 in avian and murine B cell development. Cell Immunol 122:319–328

    Article  CAS  PubMed  Google Scholar 

  • Lydyard PM, Grossi CE, Cooper MD (1976) Ontogeny of B cells in the chicken I. Sequential development of clonal diversity in the bursa. J Exp Med 144:79–97

    Article  CAS  PubMed  Google Scholar 

  • Moore RW, Caldwell DY, Berghman LR, Caldwell DJ, McElroy AP, Byrd JA, Hargis BM (2003) Effect of bursal anti-steroidogenic peptide and immunoglobulin G on neonatal chicken B-lymphocyte proliferation. Comp Biochem Physiol C Toxicol Pharmacol 134(3):291–302

    Article  CAS  PubMed  Google Scholar 

  • Mosmann TR, Coffman RL (1989) TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 7:145–173

    Article  CAS  PubMed  Google Scholar 

  • Mueller AP, Wolfe HR, Meyer RK, Aspinall RL (1962) Further studies on the role of the bursa of Fabricius in antibody production. J Immunol 88:354–360

    CAS  PubMed  Google Scholar 

  • Murthy KK, Ragland WL (1992) Effect of thymic extract on blastogenic responses of chickens. Poult Sci 71:311–315

    CAS  PubMed  Google Scholar 

  • Santin AD, Hermonat PL, Ravaggi A, Bellone S, Pecorelli S, Roman JJ, Parham GP, Cannon MJ (2000) Interleukin-10 increases Th1 cytokine production and cytotoxic potential in human papillomavirus-specific CD+ cytotoxic T lymphocytes. J Virol 74:4729–4737

    Article  CAS  PubMed  Google Scholar 

  • Schat KA, Kaiser P (1997) Avian cytokines. In: Schijins VECJ, Horzinek MC (eds) Cytokines in veterinary medicine. CAB International, New York, pp 289–318

    Google Scholar 

  • Schmidt KM, Traenckner EB, Meier B, Baeuerle PA (1995) Induction of oxidative stress by okadaic acid is required for activation of transcription factor NF-kappa B. J Biol Chem 270:27136–27142

    Article  CAS  PubMed  Google Scholar 

  • Seddigheh RB, Edwards B, Sopori ML (1999) Lead stimulates lymphocyte proliferation through enhanced T cell–B cell interaction. J Pharmacol Exp Ther 288:714–719

    Google Scholar 

  • Sies H (1999) Glutathione and its role in cellular function. Free Radic Biol Med 27:916–921

    Article  CAS  PubMed  Google Scholar 

  • Singh VK, Biswas S, Mathur KB, Haq W, Garg SK, Agarwal SS (1998) Thymopentin and splenopentin as immunomodulators. Immunol Res 17:345–368

    Article  CAS  PubMed  Google Scholar 

  • Sopori ML, Donaldson LA, Savage SM (1990) T lymphocyte heterogeneity in the rat: III. Autoreactive T cells are activated by B cells. Cell Immunol 128:427–437

    Article  CAS  PubMed  Google Scholar 

  • Sundal E (1992) Thymopentin in cancer. Curr Ther Res 51:906–924

    Google Scholar 

  • Tsepelev VL, Tsepelev SL (2003) Immunostimulating activity of synthetic bursopeptide. Bull Exp Biol Med 136:80–83

    Article  Google Scholar 

  • Yamaji-Kegan K, Su Q, Angelini DJ, Champion HC, Johns RA (2006) Hypoxia-induced mitogenic factor has proangiogenic and proinflammatory effects in the lung via VEGF and VEGF receptor-2. Am J Physiol Lung Cell Mol Physiol 291:L1159–L1168

    Article  CAS  PubMed  Google Scholar 

  • Yerneni KK, Bai W, Khan BV, Medford RM, Natarajan R (1999) Hyperglycemia-induced activation of transcription factor κB in vascular smooth muscle cells. Diabetes 48:855–864

    Article  CAS  PubMed  Google Scholar 

  • Yewdell JW, Bennink JR, Smith GL, Moss B (1985) Influenza A virus nucleoprotein is a major target antigen for cross-reactive anti-influenza A virus cytotoxic T lymphocytes. PNAS 82:1785–1789

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Zeng XK, Guo JX, Wang X (2001) Effects of homocysteine on murine splenic B lymphocyte proliferation and its signal transduction mechanism. Cardiovasc Res 52:328–336

    Article  CAS  PubMed  Google Scholar 

  • Zheng CX, Gao FB (1991) Studies of the B-cell active factors in the bursa of Fabricius of Peking Duck. Chin J Immunol 17:25–28

    Google Scholar 

  • Zheng QS, Liu HL, Zhang XY, Zhou B, Cao RB, Ren XF, Li P (2005) Prokaryotic expression and the establishment of a putative indirect ELISA assay for the HA gene of avian influenza virus H9N2 subtype. Virol Sin 20:293–297

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Yingjuan Qian (University of California, Davis, USA) for his revision and discussion. We gratefully acknowledge Shanghai Gencore Biotechnologies Co., Ltd for providing Endman degradation analysis and China National Center of Biomedical Analysis for providing mass spectrometric analysis. This work was supported in part by grants from the National High-Tech Research and Development Program of the People’s Republic of China (863 Program) (2005AA246020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Y. Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, D.Y., Geng, Z.R., Zhu, H.F. et al. Immunomodulatory activities of a new pentapeptide (Bursopentin) from the chicken bursa of Fabricius. Amino Acids 40, 505–515 (2011). https://doi.org/10.1007/s00726-010-0663-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0663-7

Keywords

Navigation