Skip to main content

Advertisement

Log in

Oxidative protein damage and the proteasome

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Protein damage, caused by radicals, is involved in many diseases and in the aging process. Therefore, it is crucial to understand how protein damage can be limited, repaired or removed. To degrade damaged proteins, several intracellular proteolytic systems exist. One of the most important contributors in intracellular protein degradation of oxidized, aggregated and misfolded proteins is the proteasomal system. The proteasome is not a simple, unregulated structure. It is a more complex proteolytic composition that undergoes diverse regulation in situations of oxidative stress, aging and pathology. In addition to that, numerous studies revealed that the proteasome activity is altered during life time, contributing to the aging process. In addition, in the nervous system, the proteasome plays an important role in maintaining neuronal protein homeostasis. However, alterations in the activity may have an impact on the onset of neurodegenerative diseases. In this review, we discuss what is presently known about protein damage, the role of the proteasome in the degradation of damaged proteins and how the proteasome is regulated. Special emphasis was laid on the role of the proteasome in neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AD:

Alzheimer's disease

ATP:

Adenosine triphosphate

γ-IFN:

Interferon-gamma

HD:

Huntington's disease

HSP:

Heat shock protein

MHC-I:

Major histocompatibility complex class I

PARP:

Poly-(ADP-ribose) polymerase

PHF:

Tau-based paired helical filaments

PD:

Parkinson's disease

ROS:

Reactive oxygen species

UCH-L1:

Ubiquitin carboxyl terminal hydrolase L1

References

  • Anselmi B, Conconi M, Veyrat-Durebex C, Turlin E, Biville F, Alliot J, Friguet B (1998) Dietary self-selection can compensate an age-related decrease of rat liver 20 S proteasome activity observed with standard diet. J Gerontol A Biol Sci Med Sci 53:B173–B179

    Article  PubMed  CAS  Google Scholar 

  • Asher G, Bercovic Z, Tsvetkov P, Shaul Y, Kahana C (2005) 20S proteasomal degradation of ornithine decarboxylase is regulated by NQO1. Mol Cell 17:645–655

    Article  PubMed  CAS  Google Scholar 

  • Avila J (2006) Tau phosphorylation and aggregation in Alzheimer’s disease pathology. FEBS Lett 580:2922–2927

    Article  PubMed  CAS  Google Scholar 

  • Bajorek M, Glickman MH (2004) Keepers at the final gates: regulatory complexes and gating of the proteasome channel. Cell Mol Life Sci 61:1579–1588

    Article  PubMed  CAS  Google Scholar 

  • Bajorek M, Finley D, Glickman MH (2003) Proteasome disassembly and downregulation is correlated with viability during stationary phase. Curr Biol 13:1140–1144

    Article  PubMed  CAS  Google Scholar 

  • Barnham KJ, Masters CL, Bush AI (2004) Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov 3:205–214

    Article  PubMed  CAS  Google Scholar 

  • Baugh JM, Pilipenko EV (2004) 20S proteasome differentially alters translation of different mRNAs via the cleavage of eIF4F and eIF3. Mol Cell 16:575–586

    Article  PubMed  CAS  Google Scholar 

  • Beckman KB, Ames BN (1998) The free radical theory of aging matures. Physiol Rev 78:547–581

    PubMed  CAS  Google Scholar 

  • Beedholm R, Clark BF, Rattan SI (2004) Mild heat stress stimulates 20S proteasome and its 11S activator in human fibroblasts undergoing aging in vitro. Cell Stress Chaperones 9:49–57

    PubMed  CAS  Google Scholar 

  • Bennett EJ, Shaler TA, Woodman B, Ryu KY, Zaitseva TS, Becker CH, Bates GP, Schulman H, Kopito RR (2007) Global changes to the ubiquitin system in Huntington’s disease. Nature 448:704–708

    Article  PubMed  CAS  Google Scholar 

  • Bercovich B, Stancovski H, Mayer A, Blumenfeld N, Laszlo A, Schwartz AL, Ciechanover A (1997) Ubiquitin-dependent degradation of certain protein substrates in vitro requires the molecular chaperone Hsc70. J Biol Chem 272:9002–9010

    Article  PubMed  CAS  Google Scholar 

  • Blickwedehl J, McEvoy S, Wong I, Kousis P, Clements J, Elliott R, Cresswell P, Liang P, Bangia N (2007) Proteasomes and proteasome activator 200 kDa (PA200) accumulate on chromatin in response to ionizing radiation. Radiat Res 167:663–674

    Article  PubMed  CAS  Google Scholar 

  • Bose S, Mason GG, Rivett AJ (1999) Phosphorylation of proteasomes in mammalian cells. Mol Biol Rep 26:11–14

    Article  PubMed  CAS  Google Scholar 

  • Bossy-Wetzel E, Schwarzenbacher R, Lipton SA (2004) Molecular pathways to neurodegeneration. Nat Med 10 (Suppl):S2–S9

    Google Scholar 

  • Breusing N, Grune T (2008) Regulation of proteasome-mediated protein degradation during oxidative stress and aging. Biol Chem 389:203–209

    Article  PubMed  CAS  Google Scholar 

  • Bulteau AL, Petropoulos I, Friguet B (2000) Age-related alterations of proteasome structure and function in aging epidermis. Exp Gerontol 35:767–777

    Article  PubMed  CAS  Google Scholar 

  • Butterfield DA, Boyd-Kimball D (2004) Proteomics analysis in Alzheimer’s disease: new insights into mechanisms of neurodegeneration. Int Rev Neurobiol 61:159–188

    Article  PubMed  Google Scholar 

  • Castano JG, Mahillo E, Arizti P, Arribas J (1996) Phosphorylation of C8 and C9 subunits of the multicatalytic proteinase by casein kinase II and identification of the C8 phosphorylation sites by direct mutagenesis. Biochemistry 35:3782–3789

    Article  PubMed  CAS  Google Scholar 

  • Castegna A, Aksenov M, Aksenova M, Thongboonkerd V, Klein JB, Pierce WM, Booze R, Markesbery WR, Butterfield DA (2002) Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part I: creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Radic Biol Med 33:562–571

    Article  PubMed  CAS  Google Scholar 

  • Cecarini V, Bonfili L, Amici M, Angeletti M, Keller JN, Eleuteri AM (2008) Amyloid peptides in different assembly states and related effects on isolated and cellular proteasomes. Brain Res 1209:8–18

    Article  PubMed  CAS  Google Scholar 

  • Chau KY, Ching HL, Schapira AH, Cooper JM (2009) Relationship between alpha synuclein phosphorylation, proteasomal inhibition and cell death: relevance to Parkinson’s disease pathogenesis. J Neurochem 110:1005–1013

    Article  PubMed  CAS  Google Scholar 

  • Choi J, Levey AI, Weintraub ST, Rees HD, Gearing M, Chin LS, Li L (2004) Oxidative modifications and down-regulation of ubiquitin carboxyl-terminal hydrolase L1 associated with idiopathic Parkinson’s and Alzheimer’s diseases. J Biol Chem 279:13256–13264

    Article  PubMed  CAS  Google Scholar 

  • Ciechanover A (1994) The ubiquitin–proteasome proteolytic pathway. Cell 79:13–21

    Article  PubMed  CAS  Google Scholar 

  • Ciechanover A, Brundin P (2003) The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg. Neuron 40:427–446

    Article  PubMed  CAS  Google Scholar 

  • Claverol S, Burlet-Schiltz O, Girbal-Neuhauser E, Gairin JE, Monsarrat B (2002) Mapping and structural dissection of human 20 S proteasome using proteomic approaches. Mol Cell Proteomics 1:567–578

    Article  PubMed  CAS  Google Scholar 

  • Conconi M, Friguet B (1997) Proteasome inactivation upon aging and on oxidation-effect of HSP 90. Mol Biol Rep 24:45–50

    Article  PubMed  CAS  Google Scholar 

  • Conconi M, Szweda LI, Levine RL, Stadtman ER, Friguet B (1996) Age-related decline of rat liver multicatalytic proteinase activity and protection from oxidative inactivation by heat-shock protein 90. Arch Biochem Biophys 331:232–240

    Article  PubMed  CAS  Google Scholar 

  • Cookson MR, Menzies FM, Manning P, Eggett CJ, Figlewicz DA, McNeil CJ, Shaw PJ (2002) Cu/Zn superoxide dismutase (SOD1) mutations associated with familial amyotrophic lateral sclerosis (ALS) affect cellular free radical release in the presence of oxidative stress. Amyotroph Lateral Scler Other Motor Neuron Disord 3:75–85

    Article  PubMed  CAS  Google Scholar 

  • Coux O, Tanaka K, Goldberg AL (1996) Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem 65:801–847

    Article  PubMed  CAS  Google Scholar 

  • Croall DE, Ersfeld K (2007) The calpains: modular designs and functional diversity. Genome Biol 8:218

    Article  PubMed  CAS  Google Scholar 

  • Davies KJ (1987) Protein damage and degradation by oxygen radicals. I. General aspects. J Biol Chem 262:9895–9901

    PubMed  CAS  Google Scholar 

  • Davies KJ (1993) Protein modification by oxidants and the role of proteolytic enzymes. Biochem Soc Trans 21:346–353

    PubMed  CAS  Google Scholar 

  • Davies KJ (2001) Degradation of oxidized proteins by the 20S proteasome. Biochimie 83:301–310

    Article  PubMed  CAS  Google Scholar 

  • Davies MJ (2003) Singlet oxygen-mediated damage to proteins and its consequences. Biochem Biophys Res Commun 305:761–770

    Article  PubMed  CAS  Google Scholar 

  • Davies MJ (2005) The oxidative environment and protein damage. Biochim Biophys Acta 1703:93–109

    PubMed  CAS  Google Scholar 

  • de Vrij FM, Fischer DF, van Leeuwen FW, Hol EM (2004) Protein quality control in Alzheimer’s disease by the ubiquitin proteasome system. Prog Neurobiol 74:249–270

    Article  PubMed  CAS  Google Scholar 

  • Demasi M, Silva GM, Netto LE (2003) 20 S proteasome from Saccharomyces cerevisiae is responsive to redox modifications and is S-glutathionylated. J Biol Chem 278:679–685

    Article  PubMed  CAS  Google Scholar 

  • Deveraux Q, Ustrell V, Pickart C, Rechsteiner M (1994) A 26 S protease subunit that binds ubiquitin conjugates. J Biol Chem 269:7059–7061

    PubMed  CAS  Google Scholar 

  • Ding Q, Keller JN (2001a) Proteasome inhibition in oxidative stress neurotoxicity: implications for heat shock proteins. J Neurochem 77:1010–1017

    Article  PubMed  CAS  Google Scholar 

  • Ding Q, Keller JN (2001b) Proteasomes and proteasome inhibition in the central nervous system. Free Radic Biol Med 31:574–584

    Article  PubMed  CAS  Google Scholar 

  • Dringen R, Gutterer JM, Hirrlinger J (2000) Glutathione metabolism in brain metabolic interaction between astrocytes and neurons in the defense against reactive oxygen species. Eur J Biochem 267:4912–4916

    Article  PubMed  CAS  Google Scholar 

  • Emerit J, Edeas M, Bricaire F (2004) Neurodegenerative diseases and oxidative stress. Biomed Pharmacother 58:39–46

    Article  PubMed  CAS  Google Scholar 

  • Fein JA, Sokolow S, Miller CA, Vinters HV, Yang F, Cole GM, Gylys KH (2008) Co-localization of amyloid beta and tau pathology in Alzheimer’s disease synaptosomes. Am J Pathol 172:1683–1692

    Article  PubMed  CAS  Google Scholar 

  • Fenteany G, Standaert RF, Lane WS, Choi S, Corey EJ, Schreiber SL (1995) Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science 268:726–731

    Article  PubMed  CAS  Google Scholar 

  • Forster A, Masters EI, Whitby FG, Robinson H, Hill CP (2005) The 1.9 A structure of a proteasome-11S activator complex and implications for proteasome-PAN/PA700 interactions. Mol Cell 18:589–599

    Article  PubMed  CAS  Google Scholar 

  • Friguet B, Szweda LI (1997) Inhibition of the multicatalytic proteinase (proteasome) by 4-hydroxy-2-nonenal cross-linked protein. FEBS Lett 405:21–25

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara T, Tanaka K, Kumatori A, Shin S, Yoshimura T, Ichihara A, Tokunaga F, Aruga R, Iwanaga S, Kakizuka A (1989) Molecular cloning of cDNA for proteasomes (multicatalytic proteinase complexes) from rat liver: primary structure of the largest component (C2). Biochemistry 28:7332–7340

    Article  PubMed  CAS  Google Scholar 

  • Gaczynska M, Osmulski PA, Gao Y, Post MJ, Simons M (2003) Proline- and arginine-rich peptides constitute a novel class of allosteric inhibitors of proteasome activity. Biochemistry 42:8663–8670

    Article  PubMed  CAS  Google Scholar 

  • Gasser T (2009) Molecular pathogenesis of Parkinson disease: insights from genetic studies. Expert Rev Mol Med 11:e22

    Article  PubMed  Google Scholar 

  • Glickman MH, Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82:373–428

    PubMed  CAS  Google Scholar 

  • Goldberg AL, Cascio P, Saric T, Rock KL (2002) The importance of the proteasome and subsequent proteolytic steps in the generation of antigenic peptides. Mol Immunol 39:147–164

    Article  PubMed  CAS  Google Scholar 

  • Gorbea C, Taillandier D, Rechsteiner M (1999) Assembly of the regulatory complex of the 26S proteasome. Mol Biol Rep 26:15–19

    Article  PubMed  CAS  Google Scholar 

  • Groll M, Huber R (2003) Substrate access and processing by the 20S proteasome core particle. Int J Biochem Cell Biol 35:606–616

    Article  PubMed  CAS  Google Scholar 

  • Groll M, Huber R (2004) Inhibitors of the eukaryotic 20S proteasome core particle: a structural approach. Biochim Biophys Acta 1695:33–44

    Article  PubMed  CAS  Google Scholar 

  • Groll M, Bajorek M, Kohler A, Moroder L, Rubin DM, Huber R, Glickman MH, Finley D (2000) A gated channel into the proteasome core particle. Nat Struct Biol 7:1062–1067

    Article  PubMed  CAS  Google Scholar 

  • Groll M, Bochtler M, Brandstetter H, Clausen T, Huber R (2005) Molecular machines for protein degradation. Chembiochem 6:222–256

    Article  PubMed  CAS  Google Scholar 

  • Grune T (2000) Oxidative stress, aging and the proteasomal system. Biogerontology 1:31–40

    Article  PubMed  CAS  Google Scholar 

  • Grune T, Reinheckel T, Joshi M, Davies KJ (1995) Proteolysis in cultured liver epithelial cells during oxidative stress. Role of the multicatalytic proteinase complex, proteasome. J Biol Chem 270:2344–2351

    Article  PubMed  CAS  Google Scholar 

  • Grune T, Reinheckel T, Davies KJ (1996) Degradation of oxidized proteins in K562 human hematopoietic cells by proteasome. J Biol Chem 271:15504–15509

    Article  PubMed  CAS  Google Scholar 

  • Grune T, Reinheckel T, Davies KJ (1997) Degradation of oxidized proteins in mammalian cells. FASEB J 11:526–534

    PubMed  CAS  Google Scholar 

  • Grune T, Klotz LO, Gieche J, Rudeck M, Sies H (2001) Protein oxidation and proteolysis by the nonradical oxidants singlet oxygen or peroxynitrite. Free Radic Biol Med 30:1243–1253

    Article  PubMed  CAS  Google Scholar 

  • Grune T, Merker K, Sandig G, Davies KJ (2003) Selective degradation of oxidatively modified protein substrates by the proteasome. Biochem Biophys Res Commun 305:709–718

    Article  PubMed  CAS  Google Scholar 

  • Grune T, Jung T, Merker K, Davies KJ (2004) Decreased proteolysis caused by protein aggregates, inclusion bodies, plaques, lipofuscin, ceroid, and ‘aggresomes’ during oxidative stress, aging, and disease. Int J Biochem Cell Biol 36:2519–2530

    Article  PubMed  CAS  Google Scholar 

  • Guedes S, Vitorino R, Domingues R, Amado F, Domingues P (2009) Oxidation of bovine serum albumin: identification of oxidation products and structural modifications. Rapid Commun Mass Spectrom 23:2307–2315

    Article  PubMed  CAS  Google Scholar 

  • Haass C, Pesold-Hurt B, Multhaup G, Beyreuther K, Kloetzel PM (1989) The PROS-35 gene encodes the 35 kd protein subunit of Drosophila melanogaster proteasome. EMBO J 8:2373–2379

    PubMed  CAS  Google Scholar 

  • Harding CV, France J, Song R, Farah JM, Chatterjee S, Iqbal M, Siman R (1995) Novel dipeptide aldehydes are proteasome inhibitors and block the MHC-I antigen-processing pathway. J Immunol 155:1767–1775

    PubMed  CAS  Google Scholar 

  • Harris JL, Alper PB, Li J, Rechsteiner M, Backes BJ (2001) Substrate specificity of the human proteasome. Chem Biol 8:1131–1141

    Article  PubMed  CAS  Google Scholar 

  • Heinemeyer W, Trondle N, Albrecht G, Wolf DH (1994) PRE5 and PRE6, the last missing genes encoding 20S proteasome subunits from yeast? Indication for a set of 14 different subunits in the eukaryotic proteasome core. Biochemistry 33:12229–12237

    Article  PubMed  CAS  Google Scholar 

  • Hernandez F, Engel T, Gomez-Ramos A, Perez M, Avila J (2005) Characterization of Alzheimer paired helical filaments by electron microscopy. Microsc Res Tech 67:121–125

    Article  PubMed  CAS  Google Scholar 

  • Höhn A, Jung T, Grimm S, Grune T (2010) Lipofuscin-bound iron is a major intracellular source of oxidants: role in senescent cells. Free Radic Biol Med 48:1100–1108

    Article  PubMed  CAS  Google Scholar 

  • Iwata A, Riley BE, Johnston JA, Kopito RR (2005) HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin. J Biol Chem 280:40282–40292

    Article  PubMed  CAS  Google Scholar 

  • Jariel-Encontre I, Bossis G, Piechaczyk M (2008) Ubiquitin-independent degradation of proteins by the proteasome. Biochim Biophys Acta 1786:153–177

    PubMed  CAS  Google Scholar 

  • Jung T, Bader N, Grune T (2007) Oxidized proteins: intracellular distribution and recognition by the proteasome. Arch Biochem Biophys 462:231–237

    Article  PubMed  CAS  Google Scholar 

  • Jung T, Catalgol B, Grune T (2009) The proteasomal system. Mol Aspects Med 30:191–296

    Article  PubMed  CAS  Google Scholar 

  • Kabuta T, Wada K (2008) Insights into links between familial and sporadic Parkinson’s disease: physical relationship between UCH-L1 variants and chaperone-mediated autophagy. Autophagy 4:827–829

    PubMed  CAS  Google Scholar 

  • Keck S, Nitsch R, Grune T, Ullrich O (2003) Proteasome inhibition by paired helical filament-tau in brains of patients with Alzheimer’s disease. J Neurochem 85:115–122

    Article  PubMed  CAS  Google Scholar 

  • Keller JN, Hanni KB, Markesbery WR (2000a) Impaired proteasome function in Alzheimer’s disease. J Neurochem 75:436–439

    Article  PubMed  CAS  Google Scholar 

  • Keller JN, Hanni KB, Markesbery WR (2000b) Possible involvement of proteasome inhibition in aging: implications for oxidative stress. Mech Ageing Dev 113:61–70

    Article  PubMed  CAS  Google Scholar 

  • Keller JN, Gee J, Ding Q (2002) The proteasome in brain aging. Ageing Res Rev 1:279–293

    Article  PubMed  CAS  Google Scholar 

  • Keller JN, Dimayuga E, Chen Q, Thorpe J, Gee J, Ding Q (2004) Autophagy, proteasomes, lipofuscin, and oxidative stress in the aging brain. Int J Biochem Cell Biol 36:2376–2391

    Article  PubMed  CAS  Google Scholar 

  • Kirkin V, Lamark T, Sou YS, Bjorkoy G, Nunn JL, Bruun JA, Shvets E, McEwan DG, Clausen TH, Wild P, Bilusic I, Theurillat JP, Overvatn A, Ishii T, Elazar Z, Komatsu M, Dikic I, Johansen T (2009) A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol Cell 33:505–516

    Article  PubMed  CAS  Google Scholar 

  • Kish SJ, Bergeron C, Rajput A, Dozic S, Mastrogiacomo F, Chang LJ, Wilson JM, DiStefano LM, Nobrega JN (1992) Brain cytochrome oxidase in Alzheimer’s disease. J Neurochem 59:776–779

    Article  PubMed  CAS  Google Scholar 

  • Kisselev AF, Kaganovich D, Goldberg AL (2002) Binding of hydrophobic peptides to several non-catalytic sites promotes peptide hydrolysis by all active sites of 20 S proteasomes. Evidence for peptide-induced channel opening in the alpha-rings. J Biol Chem 277:22260–22270

    Article  PubMed  CAS  Google Scholar 

  • Knecht E, Aguado C, Carcel J, Esteban I, Esteve JM, Ghislat G, Moruno JF, Vidal JM, Saez R (2009) Intracellular protein degradation in mammalian cells: recent developments. Cell Mol Life Sci 66:2427–2443

    Article  PubMed  CAS  Google Scholar 

  • Koegl M, Hoppe T, Schlenker S, Ulrich HD, Mayer TU, Jentsch S (1999) A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell 96:635–644

    Article  PubMed  CAS  Google Scholar 

  • Kohno J, Koguchi Y, Nishio M, Nakao K, Kuroda M, Shimizu R, Ohnuki T, Komatsubara S (2000) Structures of TMC-95A-D: novel proteasome inhibitors from Apiospora montagnei sacc. TC 1093. J Org Chem 65:990–995

    Article  PubMed  CAS  Google Scholar 

  • Kristiansen M, Deriziotis P, Dimcheff DE, Jackson GS, Ovaa H, Naumann H, Clarke AR, van Leeuwen FW, Menendez-Benito V, Dantuma NP, Portis JL, Collinge J, Tabrizi SJ (2007) Disease-associated prion protein oligomers inhibit the 26S proteasome. Mol Cell 26:175–188

    Article  PubMed  CAS  Google Scholar 

  • Kwon YD, Nagy I, Adams PD, Baumeister W, Jap BK (2004) Crystal structures of the Rhodococcus proteasome with and without its pro-peptides: implications for the role of the pro-peptide in proteasome assembly. J Mol Biol 335:233–245

    Article  PubMed  CAS  Google Scholar 

  • Kwon S, Zhang Y, Matthias P (2007) The deacetylase HDAC6 is a novel critical component of stress granules involved in the stress response. Genes Dev 21:3381–3394

    Article  PubMed  CAS  Google Scholar 

  • Lam YA, Xu W, DeMartino GN, Cohen RE (1997) Editing of ubiquitin conjugates by an isopeptidase in the 26S proteasome. Nature 385:737–740

    Article  PubMed  CAS  Google Scholar 

  • Lamark T, Johansen T (2009) Autophagy: links with the proteasome. Curr Opin Cell Biol 22:192–198

    Article  PubMed  CAS  Google Scholar 

  • Lasch P, Petras T, Ullrich O, Backmann J, Naumann D, Grune T (2001) Hydrogen peroxide induced structural alterations of RNase A. J Biol Chem 276:9492–9502

    Article  PubMed  CAS  Google Scholar 

  • Lee DH, Goldberg AL (1996) Selective inhibitors of the proteasome-dependent and vacuolar pathways of protein degradation in Saccharomyces cerevisiae. J Biol Chem 271:27280–27284

    Article  PubMed  CAS  Google Scholar 

  • Lee VM, Goedert M, Trojanowski JQ (2001) Neurodegenerative tauopathies. Annu Rev Neurosci 24:1121–1159

    Article  PubMed  CAS  Google Scholar 

  • Lee JY, Koga H, Kawaguchi Y, Tang W, Wong E, Gao YS, Pandey UB, Kaushik S, Tresse E, Lu J, Taylor JP, Cuervo AM, Yao TP (2010) HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. EMBO J 29:969–980

    Article  PubMed  CAS  Google Scholar 

  • Levine RL (2002) Carbonyl modified proteins in cellular regulation, aging, and disease. Free Radic Biol Med 32:790–796

    Article  PubMed  CAS  Google Scholar 

  • Li X, DeMartino GN (2009) Variably modulated gating of the 26S proteasome by ATP and polyubiquitin. Biochem J 421:397–404

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Fallon L, Lashuel HA, Liu Z, Lansbury PT Jr (2002) The UCH-L1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson’s disease susceptibility. Cell 111:209–218

    Article  PubMed  CAS  Google Scholar 

  • Loidl G, Musiol HJ, Groll M, Huber R, Moroder L (2000) Synthesis of bivalent inhibitors of eucaryotic proteasomes. J Pept Sci 6:36–46

    Article  PubMed  CAS  Google Scholar 

  • Lopez SM, Morelli L, Castano EM, Soto EF, Pasquini JM (2000) Defective ubiquitination of cerebral proteins in Alzheimer’s disease. J Neurosci Res 62:302–310

    Article  Google Scholar 

  • Lowe J, Stock D, Jap B, Zwickl P, Baumeister W, Huber R (1995) Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. Science 268:533–539

    Article  PubMed  CAS  Google Scholar 

  • Luders J, Demand J, Hohfeld J (2000) The ubiquitin-related BAG-1 provides a link between the molecular chaperones Hsc70/Hsp70 and the proteasome. J Biol Chem 275:4613–4617

    Article  PubMed  CAS  Google Scholar 

  • Ma CP, Slaughter CA, DeMartino GN (1992) Identification, purification, and characterization of a protein activator (PA28) of the 20 S proteasome (macropain). J Biol Chem 267:10515–10523

    PubMed  CAS  Google Scholar 

  • Mangold U, Hayakawa H, Coughlin M, Munger K, Zetter BR (2008) Antizyme, a mediator of ubiquitin-independent proteasomal degradation and its inhibitor localize to centrosomes and modulate centriole amplification. Oncogene 27:604–613

    Article  PubMed  CAS  Google Scholar 

  • Mason GG, Hendil KB, Rivett AJ (1996) Phosphorylation of proteasomes in mammalian cells. Identification of two phosphorylated subunits and the effect of phosphorylation on activity. Eur J Biochem 238:453–462

    Article  PubMed  CAS  Google Scholar 

  • Mason GG, Murray RZ, Pappin D, Rivett AJ (1998) Phosphorylation of ATPase subunits of the 26S proteasome. FEBS Lett 430:269–274

    Article  PubMed  CAS  Google Scholar 

  • McNaught KS, Jnobaptiste R, Jackson T, Jengelley TA (2010) The pattern of neuronal loss and survival may reflect differential expression of proteasome activators in Parkinson’s disease. Synapse 64:241–250

    Article  PubMed  CAS  Google Scholar 

  • Medicherla B, Goldberg AL (2008) Heat shock and oxygen radicals stimulate ubiquitin-dependent degradation mainly of newly synthesized proteins. J Cell Biol 182:663–673

    Article  PubMed  CAS  Google Scholar 

  • Moore DJ (2006) Parkin: a multifaceted ubiquitin ligase. Biochem Soc Trans 34:749–753

    Article  PubMed  CAS  Google Scholar 

  • Moorthy AK, Savinova OV, Ho JQ, Wang VY-F, Vu D, Gosh G (2006) The 20S proteasome processes NF-kappaB1 p105 into p50 in a translation-independent manner. EMBO J 25:1945–1956

    Article  PubMed  CAS  Google Scholar 

  • Murakami Y, Matsufuji S, Hayashi S, Tanahashi N, Tanaka K (2000) Degradation of ornithine decarboxylase by the 26S proteasome. Biochem Biophys Res Commun 267:1–6

    Article  PubMed  CAS  Google Scholar 

  • Naslund J, Haroutunian V, Mohs R, Davis KL, Davies P, Greengard P, Buxbaum JD (2000) Correlation between elevated levels of amyloid beta-peptide in the brain and cognitive decline. JAMA 283:1571–1577

    Article  PubMed  CAS  Google Scholar 

  • Nedelsky NB, Todd PK, Taylor JP (2008) Autophagy and the ubiquitin–proteasome system: collaborators in neuroprotection. Biochim Biophys Acta 1782:691–699

    PubMed  CAS  Google Scholar 

  • Nickell S, Beck F, Scheres SH, Korinek A, Forster F, Lasker K, Mihalache O, Sun N, Nagy I, Sali A, Plitzko JM, Carazo JM, Mann M, Baumeister W (2009) Insights into the molecular architecture of the 26S proteasome. Proc Natl Acad Sci USA 106:11943–11947

    Article  PubMed  CAS  Google Scholar 

  • Oh S, Hong HS, Hwang E, Sim HJ, Lee W, Shin SJ, Mook-Jung I (2005) Amyloid peptide attenuates the proteasome activity in neuronal cells. Mech Ageing Dev 126:1292–1299

    Article  PubMed  CAS  Google Scholar 

  • Orenstein SJ, and Cuervo AM (2010) Chaperone-mediated autophagy: Molecular mechanisms and physiological relevance. Semin Cell Dev Biol

  • Pacifici RE, Kono Y, Davies KJ (1993) Hydrophobicity as the signal for selective degradation of hydroxyl radical-modified hemoglobin by the multicatalytic proteinase complex, proteasome. J Biol Chem 268:15405–15411

    PubMed  CAS  Google Scholar 

  • Pandey UB, Nie Z, Batlevi Y, McCray BA, Ritson GP, Nedelsky NB, Schwartz SL, DiProspero NA, Knight MA, Schuldiner O, Padmanabhan R, Hild M, Berry DL, Garza D, Hubbert CC, Yao TP, Baehrecke EH, Taylor JP (2007) HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 447:859–863

    Article  PubMed  CAS  Google Scholar 

  • Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Overvatn A, Bjorkoy G, Johansen T (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282:24131–24145

    Article  PubMed  CAS  Google Scholar 

  • Peters JM (1994) Proteasomes: protein degradation machines of the cell. Trends Biochem Sci 19:377–382

    Article  PubMed  CAS  Google Scholar 

  • Petropoulos I, Conconi M, Wang X, Hoenel B, Bregegere F, Milner Y, Friguet B (2000) Increase of oxidatively modified protein is associated with a decrease of proteasome activity and content in aging epidermal cells. J Gerontol A Biol Sci Med Sci 55:B220–B227

    Article  PubMed  CAS  Google Scholar 

  • Pickart CM, Eddins MJ (2004) Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta 1695:55–72

    Article  PubMed  CAS  Google Scholar 

  • Pickart CM, Fushman D (2004) Polyubiquitin chains: polymeric protein signals. Curr Opin Chem Biol 8:610–616

    Article  PubMed  CAS  Google Scholar 

  • Powell SR, Davies KJ, Divald A (2007) Optimal determination of heart tissue 26S-proteasome activity requires maximal stimulating ATP concentrations. J Mol Cell Cardiol 42:265–269

    Article  PubMed  CAS  Google Scholar 

  • Rabl J, Smith DM, Yu Y, Chang SC, Goldberg AL, Cheng Y (2008) Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases. Mol Cell 30:360–368

    Article  PubMed  CAS  Google Scholar 

  • Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, Scaravilli F, Easton DF, Duden R, O’Kane CJ, Rubinsztein DC (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36:585–595

    Article  PubMed  CAS  Google Scholar 

  • Rechsteiner M, Realini C, Ustrell V (2000) The proteasome activator 11 S REG (PA28) and class I antigen presentation. Biochem J 345(Pt 1):1–15

    Article  PubMed  CAS  Google Scholar 

  • Reinheckel T, Sitte N, Ullrich O, Kuckelkorn U, Davies KJ, Grune T (1998) Comparative resistance of the 20S and 26S proteasome to oxidative stress. Biochem J 335(Pt 3):637–642

    PubMed  CAS  Google Scholar 

  • Reinheckel T, Grune T, Davies KJ (2000) The measurement of protein degradation in response to oxidative stress. Methods Mol Biol 99:49–60

    PubMed  CAS  Google Scholar 

  • Richly H, Rape M, Braun S, Rumpf S, Hoege C, Jentsch S (2005) A series of ubiquitin binding factors connects CDC48/p97 to substrate multiubiquitylation and proteasomal targeting. Cell 120:73–84

    Article  PubMed  CAS  Google Scholar 

  • Rock KL, Goldberg AL (1999) Degradation of cell proteins and the generation of MHC class I-presented peptides. Annu Rev Immunol 17:739–779

    Article  PubMed  CAS  Google Scholar 

  • Rock KL, Gramm C, Rothstein L, Clark K, Stein R, Dick L, Hwang D, Goldberg AL (1994) Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78:761–771

    Article  PubMed  CAS  Google Scholar 

  • Rubinsztein DC (2006) The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443:780–786

    Article  PubMed  CAS  Google Scholar 

  • Rydzewski RM, Burrill L, Mendonca R, Palmer JT, Rice M, Tahilramani R, Bass KE, Leung L, Gjerstad E, Janc JW, Pan L (2006) Optimization of subsite binding to the beta5 subunit of the human 20S proteasome using vinyl sulfones and 2-keto-1, 3, 4-oxadiazoles: syntheses and cellular properties of potent, selective proteasome inhibitors. J Med Chem 49:2953–2968

    Article  PubMed  CAS  Google Scholar 

  • Savory PJ, Djaballah H, Angliker H, Shaw E, Rivett AJ (1993) Reaction of proteasomes with peptidylchloromethanes and peptidyldiazomethanes. Biochem J 296(Pt 3):601–605

    PubMed  CAS  Google Scholar 

  • Sdek P, Ying H, Chang DLF, Qiu W, Zhang H, Toultou R, Allday MJ, Xiao Z-XJ (2005) MDM2 promotes proteasome-dependent ubiquitin-independent degradation of retinoblastoma protein. Mol Cell 20:699–708

    Article  PubMed  CAS  Google Scholar 

  • Selkoe DJ (2002) Alzheimer’s disease is a synaptic failure. Science 298:789–791

    Article  PubMed  CAS  Google Scholar 

  • Shringarpure R, Davies KJ (2002) Protein turnover by the proteasome in aging and disease. Free Radic Biol Med 32:1084–1089

    Article  PubMed  CAS  Google Scholar 

  • Shringarpure R, Grune T, Mehlhase J, Davies KJ (2003) Ubiquitin conjugation is not required for the degradation of oxidized proteins by proteasome. J Biol Chem 278:311–318

    Article  PubMed  CAS  Google Scholar 

  • Sitte N, Huber M, Grune T, Ladhoff A, Doecke WD, von Zglinicki T, Davies KJ (2000) Proteasome inhibition by lipofuscin/ceroid during postmitotic aging of fibroblasts. FASEB J 14:1490–1498

    Article  PubMed  CAS  Google Scholar 

  • Smith DM, Kafri G, Cheng Y, Ng D, Walz T, Goldberg AL (2005) ATP binding to PAN or the 26S ATPases causes association with the 20S proteasome, gate opening, and translocation of unfolded proteins. Mol Cell 20:687–698

    Article  PubMed  CAS  Google Scholar 

  • Smith DM, Chang SC, Park S, Finley D, Cheng Y, Goldberg AL (2007) Docking of the proteasomal ATPases’ carboxyl termini in the 20S proteasome’s alpha ring opens the gate for substrate entry. Mol Cell 27:731–744

    Article  PubMed  CAS  Google Scholar 

  • Soti C, Csermely P (2003) Aging and molecular chaperones. Exp Gerontol 38:1037–1040

    Article  PubMed  CAS  Google Scholar 

  • Speese SD, Trotta N, Rodesch CK, Aravamudan B, Broadie K (2003) The ubiquitin proteasome system acutely regulates presynaptic protein turnover and synaptic efficacy. Curr Biol 13:899–910

    Article  PubMed  CAS  Google Scholar 

  • Stadtman ER (1992) Protein oxidation and aging. Science 257:1220–1224

    Article  PubMed  CAS  Google Scholar 

  • Stadtman ER, Levine RL (2000) Protein oxidation. Ann N Y Acad Sci 899:191–208

    Article  PubMed  CAS  Google Scholar 

  • Stadtman ER, Levine RL (2003) Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 25:207–218

    Article  PubMed  CAS  Google Scholar 

  • Sun F, Anantharam V, Zhang D, Latchoumycandane C, Kanthasamy A, Kanthasamy AG (2006) Proteasome inhibitor MG-132 induces dopaminergic degeneration in cell culture and animal models. Neurotoxicology 27:807–815

    Article  PubMed  CAS  Google Scholar 

  • Tanahashi N, Murakami Y, Minami Y, Shimbara N, Hendil KB, Tanaka K (2000) Hybrid proteasomes. Induction by interferon-gamma and contribution to ATP-dependent proteolysis. J Biol Chem 275:14336–14345

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Kasahara M (1998) The MHC class I ligand-generating system: roles of immunoproteasomes and the interferon-gamma-inducible proteasome activator PA28. Immunol Rev 163:161–176

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Fujiwara T, Kumatori A, Shin S, Yoshimura T, Ichihara A, Tokunaga F, Aruga R, Iwanaga S, Kakizuka A (1990) Molecular cloning of cDNA for proteasomes from rat liver: primary structure of component C3 with a possible tyrosine phosphorylation site. Biochemistry 29:3777–3785

    Article  PubMed  CAS  Google Scholar 

  • Unno M, Mizushima T, Morimoto Y, Tomisugi Y, Tanaka K, Yasuoka N, Tsukihara T (2002) Structure determination of the constitutive 20S proteasome from bovine liver at 2.75 A resolution. J Biochem 131:171–173

    PubMed  CAS  Google Scholar 

  • Upadhya SC, Hegde AN (2005) Ubiquitin–proteasome pathway components as therapeutic targets for CNS maladies. Curr Pharm Des 11:3807–3828

    Article  PubMed  CAS  Google Scholar 

  • Ustrell V, Hoffman L, Pratt G, Rechsteiner M (2002) PA200, a nuclear proteasome activator involved in DNA repair. EMBO J 21:3516–3525

    Article  PubMed  CAS  Google Scholar 

  • Verdoes M, Florea BI, van der Linden WA, Renou D, van den Nieuwendijk AM, van der Marel GA, Overkleeft HS (2007) Mixing of peptides and electrophilic traps gives rise to potent, broad-spectrum proteasome inhibitors. Org Biomol Chem 5:1416–1426

    Article  PubMed  CAS  Google Scholar 

  • Verma R, Aravind L, Oania R, McDonald WH, Yates JR III, Koonin EV, Deshaies RJ (2002) Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 298:611–615

    Article  PubMed  CAS  Google Scholar 

  • Viteri G, Carrard G, Birlouez-Aragon I, Silva E, Friguet B (2004) Age-dependent protein modifications and declining proteasome activity in the human lens. Arch Biochem Biophys 427:197–203

    Article  PubMed  CAS  Google Scholar 

  • Walters BJ, Campbell SL, Chen PC, Taylor AP, Schroeder DG, Dobrunz LE, Rtavanis-Tsakonas K, Ploegh HL, Wilson JA, Cox GA, Wilson SM (2008) Differential effects of Usp14 and Uch-L1 on the ubiquitin proteasome system and synaptic activity. Mol Cell Neurosci 39:539–548

    Article  PubMed  CAS  Google Scholar 

  • Williams A, Jahreiss L, Sarkar S, Saiki S, Menzies FM, Ravikumar B, Rubinsztein DC (2006) Aggregate-prone proteins are cleared from the cytosol by autophagy: therapeutic implications. Curr Top Dev Biol 76:89–101

    Article  PubMed  CAS  Google Scholar 

  • Yin DZ (1992) Lipofuscin-like fluorophores can result from reactions between oxidized ascorbic acid and glutamine. Carbonyl-protein cross-linking may represent a common reaction in oxygen radical and glycosylation-related ageing processes. Mech Ageing Dev 62:35–45

    Article  PubMed  CAS  Google Scholar 

  • Yin D (1996) Biochemical basis of lipofuscin, ceroid, and age pigment-like fluorophores. Free Radic Biol Med 21:871–888

    Article  PubMed  CAS  Google Scholar 

  • Zhang F, Su K, Yang X, Bowe DB, Paterson AJ, Kudlow JE (2003a) O-GlcNAc modification is an endogenous inhibitor of the proteasome. Cell 115:715–725

    Article  PubMed  CAS  Google Scholar 

  • Zhang M, Pickart CM, Coffino P (2003b) Determinants of proteasome recognition of ornithine decarboxylase, a ubiquitin-independent substrate. EMBO J 22:1488–1496

    Article  PubMed  CAS  Google Scholar 

  • Zhang M, MacDonald AI, Hoyt MA, Coffino P (2004) Proteasomes begin ornithine decarboxylase digestion at the C terminus. J Biol Chem 279:20959–20965

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Yuan Z, Zhang Y, Yong S, Salas-Burgos A, Koomen J, Olashaw N, Parsons JT, Yang XJ, Dent SR, Yao TP, Lane WS, Seto E (2007) HDAC6 modulates cell motility by altering the acetylation level of cortactin. Mol Cell 27:197–213

    Article  PubMed  CAS  Google Scholar 

  • Zwickl P, Ng D, Woo K, Klenk H-P, Goldberg AL (1999) An archaebacterial ATPase, homologous to ATPases in the eukaryotic 26S proteasome, activates protein breakdown by 20S proteasomes. J Biol Chem 274(37):26008–26014

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Grune.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grimm, S., Höhn, A. & Grune, T. Oxidative protein damage and the proteasome. Amino Acids 42, 23–38 (2012). https://doi.org/10.1007/s00726-010-0646-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0646-8

Keywords

Navigation