Skip to main content

Advertisement

Log in

Protein damage by photo-activated Zn(II) N-alkylpyridylporphyrins

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Destruction of unwanted cells and tissues in photodynamic therapy (PDT) is achieved by a combination of light, oxygen, and light-sensitive molecules. The advantages of PDT compared to other traditional treatment modalities, and the shortcomings of the currently used photosensitizers, have stimulated the search for new, more efficient photosensitizer candidates. Ability to inflict selective damage to particular proteins through photo-irradiation would significantly advance the design of highly specific photosensitizers. Achieving this objective requires comprehensive knowledge concerning the interactions of the particular photosensitizer with specific targets. Here, we summarize the effects of Zn(II) N-alkylpyridylporphyrin-based photosensitizers on intracellular (metabolic, antioxidant and mitochondrial enzymes) and membrane proteins. We emphasize how the structural modifications of the porphyrin side substituents affect their lipophilicity, which in turn influence their subcellular localization. Thus, Zn(II) N-alkylpyridylporphyrins target particular cellular sites and proteins of interest, and are more efficient than hematoporphyrin D, whose commercial preparation (Photofrin) has been clinically approved for PDT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. ZnTalkyl-2,3,4-PyP5+ Zn(II) meso-tetrakis(N-alkylpyridinium-2 or 3-yl)porphyrin, alkyl being methyl (ZnTM-2-PyP, ZnTM-3-PyP, ZnTM-4-PyP), ethyl (ZnTE-2-PyP), n-butyl (ZnTnBu-2-PyP), and n-hexyl (ZnTnHex-2-PyP) 2, 3, and 4 relate to ortho, meta, and para isomers, respectively. Hematoporphyrin D, HpD.

References

  • Al-Mutairi DA, Craik JD, Batinic-Haberle I, Benov LT (2006) Photosensitizing action of isomeric zinc N-methylpyridyl porphyrins in human carcinoma cells. Free Radic Res 40:477–483

    Article  PubMed  CAS  Google Scholar 

  • Al-Mutairi DA, Craik JD, Batinic-Haberle I, Benov LT (2007a) Inactivation of metabolic enzymes by photo-treatment with zinc meta N-methylpyridylporphyrin. Biochim Biophys Acta 1770:1520–1527

    Article  PubMed  CAS  Google Scholar 

  • Al-Mutairi DA, Craik JD, Batinic-Haberle I, Benov LT (2007b) Induction of oxidative cell damage by photo-treatment with zinc N-methylpyridylporphyrin. Free Radic Res 41:89–96

    Article  PubMed  CAS  Google Scholar 

  • Atlante A, Passarella S, Quagliariello E, Moreno G, Salet C (1989) Haematoporphyrin derivative (Photofrin II) photosensitization of isolated mitochondria: inhibition of ADP/ATP translocator. J Photochem Photobiol B 4:35–46

    Article  PubMed  CAS  Google Scholar 

  • Batinic-Haberle I, Benov L, Spasojevic I, Fridovich I (1998) The ortho effect makes manganese(III) meso-tetrakis(N-methylpyridinium-2-yl)porphyrin a powerful and potentially useful superoxide dismutase mimic. J Biol Chem 273:24521–24528

    Article  PubMed  CAS  Google Scholar 

  • Batinic-Haberle I, Reboucas J, Benov L, Spasojevic I (2010a) Chemistry, biology and medical effects of water-soluble porphyrins. In: Kadish K, Smith K, Guillard R (eds) Handbook of porphyrin science, vol XI, World Scientific (in press)

  • Batinic-Haberle I, Spasojevic I, Piganelli JD, Reboucas JS, Dewhirst MW, Vujaskovic Z, Warner DS, St Clair DK (2010b) The remarkable potency of Mn-porphyrins in treating oxidative stress injuries arises from their differential tissue and subcellular distribution and interaction with redox-based transcription factors. In: 6th International conference on porphyrins and phthalocyanines, ICPP-6, New Mexico

  • Benov L, Batinic-Haberle I, Spasojevic I, Fridovich I (2002) Isomeric N-alkylpyridylporphyrins and their Zn(II) complexes: inactive as SOD mimics but powerful photosensitizers. Arch Biochem Biophys 402:159–165

    Article  PubMed  CAS  Google Scholar 

  • Berridge MV, Tan AS (1993) Characterization of the cellular reduction of 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Arch Biochem Biophys 303:474–482

    Article  PubMed  CAS  Google Scholar 

  • Berridge MV, Herst PM, Tan AS (2005) Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol Annu Rev 11:127–152

    Article  PubMed  CAS  Google Scholar 

  • Boros LG, Lee PW, Brandes JL, Cascante M, Muscarella P, Schirmer WJ, Melvin WS, Ellison EC (1998) Nonoxidative pentose phosphate pathways and their direct role in ribose synthesis in tumors: is cancer a disease of cellular glucose metabolism? Med Hypotheses 50:55–59

    Article  PubMed  CAS  Google Scholar 

  • Boyle RW, Dolphin D (1996) Structure and biodistribution relationships of photodynamic sensitizers. Photochem Photobiol 64:469–485

    Article  PubMed  CAS  Google Scholar 

  • Castano AP, Demidova TN, Hamblin MR (2004) Mechanisms in photodynamic therapy: Part one-Photosensitizers, photochemistry and cellular localization. Photodiagnosis Photodyn Ther 1:279–293

    Article  CAS  Google Scholar 

  • Castano AP, Mroz P, Hamblin MR (2006) Photodynamic therapy and anti-tumour immunity. Nat Rev Cancer 6:535–545

    Article  PubMed  CAS  Google Scholar 

  • Chen B, Pogue BW, Hoopes PJ, Hasan T (2006) Vascular and cellular targeting for photodynamic therapy. Crit Rev Eukaryot Gene Expr 16:279–305

    PubMed  Google Scholar 

  • Coppola A, Viggiani E, Salzarulo L, Rasile G (1980) Ultrastructural changes in lymphoma cells treated with hematoporphyrin and light. Am J Pathol 99:175–192

    PubMed  CAS  Google Scholar 

  • Davies MJ (2003) Singlet oxygen-mediated damage to proteins and its consequences. Biochem Biophys Res Commun 305:761–770

    Article  PubMed  CAS  Google Scholar 

  • Davies MJ (2004) Reactive species formed on proteins exposed to singlet oxygen. Photochem Photobiol Sci 3:17–25

    Article  PubMed  CAS  Google Scholar 

  • Davies MJ (2005) The oxidative environment and protein damage. Biochim Biophys Acta 1703:93–109

    PubMed  CAS  Google Scholar 

  • Donnelly RF, McCarron PA, Tunney MM (2008) Antifungal photodynamic therapy. Microbiol Res 163:1–12

    Article  PubMed  CAS  Google Scholar 

  • Dummin H, Cernay T, Zimmermann HW (1997) Selective photosensitization of mitochondria in HeLa cells by cationic Zn(II)phthalocyanines with lipophilic side-chains. J Photochem Photobiol B 37:219–229

    Article  PubMed  CAS  Google Scholar 

  • Dutta AK, Sabirov RZ, Uramoto H, Okada Y (2004) Role of ATP-conductive anion channel in ATP release from neonatal rat cardiomyocytes in ischaemic or hypoxic conditions. J Physiol 559:799–812

    PubMed  CAS  Google Scholar 

  • Escobar JA, Rubio MA, Lissi EA (1996) SOD and catalase inactivation by singlet oxygen and peroxyl radicals. Free Radic Biol Med 20:285–290

    Article  PubMed  CAS  Google Scholar 

  • Ferrer-Sueta G, Radi R (2009) Chemical biology of peroxynitrite: kinetics, diffusion, and radicals. ACS Chem Biol 4:161–177

    Article  PubMed  CAS  Google Scholar 

  • Foote CS (1991) Definition of type I and type II photosensitized oxidation. Photochem Photobiol 54:659

    Article  PubMed  CAS  Google Scholar 

  • Fridovich I (1998) Oxygen toxicity: a radical explanation. J Exp Biol 201:1203–1209

    PubMed  CAS  Google Scholar 

  • Gomyo T, Fujimaki M (1970) Studies on changes in protein by dye sensitized photooxidation. Part 3: On the photodecomposition products of lysozyme. Agric Biol Chem 34:302–309

    Article  CAS  Google Scholar 

  • Groves JT (1999) Peroxynitrite: reactive, invasive and enigmatic. Curr Opin Chem Biol 3:226–235

    Article  PubMed  CAS  Google Scholar 

  • Hazama A, Fan HT, Abdullaev I, Maeno E, Tanaka S, Ando-Akatsuka Y, Okada Y (2000) Swelling-activated, cystic fibrosis transmembrane conductance regulator-augmented ATP release and Cl-conductances in murine C127 cells. J Physiol 1:1–11

    Article  Google Scholar 

  • Hilf R (2007) Mitochondria are targets of photodynamic therapy. J Bioenerg Biomembr 39:85–89

    Article  PubMed  CAS  Google Scholar 

  • Hilf R, Warne NW, Smail DB, Gibson SL (1984) Photodynamic inactivation of selected intracellular enzymes by hematoporphyrin derivative and their relationship to tumor cell viability in vitro. Cancer Lett 24:165–172

    Article  PubMed  CAS  Google Scholar 

  • Imlay JA (2008) Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem 77:755–776

    Article  PubMed  CAS  Google Scholar 

  • Juarranz A, Jaaen P, Sanz-Rodriguez F, Cuevas J, Gonzalez S (2008) Photodynamic therapy of cancer. Basic principles and applications. Clin Transl Oncol 10:148–154

    Article  PubMed  CAS  Google Scholar 

  • Juzeniene A, Moan J (2007) The history of PDT in Norway. Part one: Identification of basic mechanisms of general PDT. Photodiagnosis Photodyn Ther 4:3–11

    Article  CAS  Google Scholar 

  • Juzeniene A, Nielsen KP, Moan J (2006) Biophysical aspects of photodynamic therapy. J Environ Pathol Toxicol Oncol 25:7–28

    PubMed  CAS  Google Scholar 

  • Kalyanasundaram K (1983) Photochemistry of water-soluble porphyrins: comparative study of Isomeric tetrapyridyl- and tetrakis(N-Methylpyridiniumyl)porphyrins. Inorg Chem 23:2453–2459

    Article  Google Scholar 

  • Kee HL, Bhaumik J, Diers JR, Mroz P, Hamblin MR, Bocian DF, Lindsey JS, Holten D (2008) Photophysical characterization of imidazolium-substituted Pd(II), In(III), and Zn(II) porphyrins as photosensitizers for photodynamic therapy. J Photochem Photobiol A Chem 200:346–355

    Article  PubMed  CAS  Google Scholar 

  • Korshunov SS, Imlay JA (2002) A potential role for periplasmic superoxide dismutase in blocking the penetration of external superoxide into the cytosol of Gram-negative bacteria. Mol Microbiol 43:95–106

    Article  PubMed  CAS  Google Scholar 

  • Kos I, Benov L, Spasojevic I, Reboucas JS, Batinic-Haberle I (2009a) High lipophilicity of meta Mn(III) N-alkylpyridylporphyrin-based superoxide dismutase mimics compensates for their lower antioxidant potency and makes them as effective as ortho analogues in protecting superoxide dismutase-deficient Escherichia coli. J Med Chem 52:7868–7872

    Article  PubMed  CAS  Google Scholar 

  • Kos I, Reboucas JS, DeFreitas-Silva G, Salvemini D, Vujaskovic Z, Dewhirst MW, Spasojevic I, Batinic-Haberle I (2009b) Lipophilicity of potent porphyrin-based antioxidants: comparison of ortho and meta isomers of Mn(III) N-alkylpyridylporphyrins. Free Radic Biol Med 47:72–78

    Article  PubMed  CAS  Google Scholar 

  • Liochev SI (1996) The role of iron-sulfur clusters in in vivo hydroxyl radical production. Free Radic Res 25:369–384

    Article  PubMed  CAS  Google Scholar 

  • Lledias F, Hansberg W (1999) Oxidation of human catalase by singlet oxygen in myeloid leukemia cells. Photochem Photobiol 70:887–892

    Article  PubMed  CAS  Google Scholar 

  • Lledias F, Rangel P, Hansberg W (1998) Oxidation of catalase by singlet oxygen. J Biol Chem 273:10630–10637

    Article  PubMed  CAS  Google Scholar 

  • Low PS (1986) Structure and function of the cytoplasmic domain of band 3: center of erythrocyte membrane-peripheral protein interactions. Biochim Biophys Acta 864:145–167

    PubMed  CAS  Google Scholar 

  • Luo J, Li L, Zhang Y, Spitz DR, Buettner GR, Oberley LW, Domann FE (2006) Inactivation of primary antioxidant enzymes in mouse keratinocytes by photodynamically generated singlet oxygen. Antioxid Redox Signal 8:1307–1314

    Article  PubMed  CAS  Google Scholar 

  • Lynch RE, Fridovich I (1978) Permeation of the erythrocyte stroma by superoxide radical. J Biol Chem 253:4697–4699

    PubMed  CAS  Google Scholar 

  • Mikkelsen RB, Wardman P (2003) Biological chemistry of reactive oxygen and nitrogen and radiation-induced signal transduction mechanisms. Oncogene 22:5734–5754

    Article  PubMed  CAS  Google Scholar 

  • Moan J (1990) On the diffusion length of singlet oxygen in cells and tissues. J Photochem Photobiol B 6:343–344

    Article  CAS  Google Scholar 

  • Moan J, Berg K (1991) The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen. Photochem Photobiol 53:549–553

    Article  PubMed  CAS  Google Scholar 

  • Morgan J, Oseroff AR (2001) Mitochondria-based photodynamic anti-cancer therapy. Adv Drug Deliv Rev 49:71–86

    Article  PubMed  CAS  Google Scholar 

  • Murphy MP, Smith RAJ (2007) Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu Rev Pharmacol Toxicol 47:629–656

    Article  PubMed  CAS  Google Scholar 

  • Nyman ES, Hynninen PH (2004) Research advances in the use of tetrapyrrolic photosensitizers for photodynamic therapy. J Photochem Photobiol B 73:1–28

    Article  PubMed  CAS  Google Scholar 

  • Pelicano H, Martin DS, Xu RH, Huang P (2006) Glycolysis inhibition for anticancer treatment. Oncogene 25:4633–4646

    Article  PubMed  CAS  Google Scholar 

  • Radi R (2009) Peroxynitrite and reactive nitrogen species: the contribution of ABB in two decades of research. Arch Biochem Biophys 484:111–113

    Article  PubMed  CAS  Google Scholar 

  • Robertson CA, Evans DH, Abrahamse H (2009) Photodynamic therapy (PDT): a short review on cellular mechanisms and cancer research applications for PDT. J Photochem Photobiol B 96:1–8

    Article  PubMed  CAS  Google Scholar 

  • Sabirov RZ, Dutta AK, Okada Y (2001) Volume-dependent ATP-conductive large-conductance anion channel as a pathway for swelling-induced ATP release. J Gen Physiol 118:251–266

    Article  PubMed  CAS  Google Scholar 

  • Salet C, Moreno G (1995) Photodynamic action increases leakage of the mitochondrial electron transport chain. Int J Radiat Biol 67:477–480

    Article  PubMed  CAS  Google Scholar 

  • Silva JN, Filipe P, Morliere P, Maziere J-C, Freitas JP, Gomes MM, Santus R (2008) Photodynamic therapy: dermatology and ophthalmology as main fields of current applications in clinic. Biomed Mater Eng 18:319–327

    PubMed  CAS  Google Scholar 

  • Spasojevic I, Chen Y, Noel TJ, Yu Y, Cole MP, Zhang L, Zhao Y, St. Clair DK, Batinic-Haberle I (2007) Mn porphyrin-based superoxide dismutase (SOD) mimic, MnIIITE-2-PyP5+ , targets mouse heart mitochondria. Free Radic Biol Med 42:1193–1200

    Article  PubMed  CAS  Google Scholar 

  • Spikes JD, Shen H-R, Kopeckova P, Kopecek J (1999) Photodynamic crosslinking of proteins. III. Kinetics of the FMN- and rose bengal-sensitized photooxidation and intermolecular crosslinking of model tyrosine-containing N-(2-hydroxypropyl)methacrylamide copolymers. Photochem Photobiol 70:130–137

    Article  PubMed  CAS  Google Scholar 

  • Taub AF (2007) Photodynamic therapy: other uses. Dermatol Clin 25:101–109

    PubMed  CAS  Google Scholar 

  • Truscott RJW, Augusteyn RC (1977) Oxidative changes in human lens proteins during senile nuclear cataract formation. Biochim Biophys Acta 492:43–52

    PubMed  CAS  Google Scholar 

  • Verweij H, Dubbelman TM, Van Steveninck J (1981) Photodynamic protein cross-linking. Biochim Biophys Acta 647:87–94

    Article  PubMed  CAS  Google Scholar 

  • Waksman R, McEwan PE, Moore TI, Pakala R, Kolodgie FD, Hellinga DG, Seabron RC, Rychnovsky SJ, Vasek J, Scott RW, Virmani R (2008) Photopoint photodynamic therapy promotes stabilization of atherosclerotic plaques and inhibits plaque progression. J Am Coll Cardiol 52:1024–1032

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson F, Helman WP, Ross AB (1995) Rate constants for the decay and reactions of the lowest electronically excited singlet state of molecular oxygen in solution. An expanded and revised compilation. J Phys Chem Ref Data 24:663–1021

    Article  CAS  Google Scholar 

  • Woodburn KW, Fan Q, Kessel D, Wright M, Mody TD, Hemmi G, Magda D, Sessler JL, Dow WC, Miller RA, Young SW (1996) Phototherapy of cancer and atheromatous plaque with texaphyrins. J Clin Laser Med Surg 14:343–348

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

LB and JC are grateful for the financial support by grants MB 07/04, MB 03/07, and YM 02/08 from Kuwait University and to Research Core Facility (GM01/01 and GM01/05). IBH acknowledges the support from NIH U19 AI67798, Wallace H Coulter Translational Partners Grant Program, and NIH-IR21-ESO/3682. The authors are grateful to Dr. Irwin Fridovich for his guidance, ideas and continuous help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludmil Benov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benov, L., Craik, J. & Batinic-Haberle, I. Protein damage by photo-activated Zn(II) N-alkylpyridylporphyrins. Amino Acids 42, 117–128 (2012). https://doi.org/10.1007/s00726-010-0640-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0640-1

Keywords

Navigation