Skip to main content

Advertisement

Log in

Reactive nitroxidative species and nociceptive processing: determining the roles for nitric oxide, superoxide, and peroxynitrite in pain

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Pain is a multidimensional perception and is modified at distinct regions of the neuroaxis. During enhanced pain, neuroplastic changes occur in the spinal and supraspinal nociceptive modulating centers and may result in a hypersensitive state termed central sensitization, which is thought to contribute to chronic pain states. Central sensitization culminates in hyperexcitability of dorsal horn nociceptive neurons resulting in increased nociceptive transmission and pain perception. This state is associated with enhanced nociceptive signaling, spinal glutamate-mediated N-methyl-d-aspartate receptor activation, neuroimmune activation, nitroxidative stress, and supraspinal descending facilitation. The nitroxidative species considered for their role in nociception and central sensitization include nitric oxide (NO), superoxide (\({\text {O}_2}^{{\cdot }^{-}}\)), and peroxynitrite (ONOO). Nitroxidative species are implicated during persistent but not normal nociceptive processing. This review examines the role of nitroxidative species in pain through a discussion of their contributions to central sensitization and the underlying mechanisms. Future directions for nitroxidative pain research are also addressed. As more selective pharmacologic agents are developed to target nitroxidative species, the exact role of nitroxidative species in pain states will be better characterized and should offer promising alternatives to available pain management options.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alderton WK, Cooper CE, Knowles RG (2001) Nitric oxide synthases: structure, function and inhibition. Biochem J 357:593–615

    Article  PubMed  CAS  Google Scholar 

  • Alexander JH, Reynolds HR, Stebbins AL et al (2007) Effect of tilarginine acetate in patients with acute myocardial infarction and cardiogenic shock: the TRIUMPH randomized controlled trial. JAMA 297:1657–1666

    Article  PubMed  CAS  Google Scholar 

  • Arora M, Kumar A, Kaundal RK et al (2008) Amelioration of neurological and biochemical deficits by peroxynitrite decomposition catalysts in experimental diabetic neuropathy. Eur J Pharmacol 596:77–83

    Article  PubMed  CAS  Google Scholar 

  • Batinic-Haberle I, Spasojevic I, Hambright P et al (1999) The relationship between redox potentials, proton dissociation constants of pyrrolic nitrogen, and in vitro and in vivo superoxide dismutase activities of manganese(III) and iron(III) cationic and anionic porphyrins. Inorg Chem 38:4011–4022

    Article  CAS  Google Scholar 

  • Batinic-Haberle I, Spasojevic I, Stevens RD, et al. (2002) Manganese(iii) meso-tetrakis(ortho-N-alkylpyridyl)porphyrins. Synthesis, characterization, and catalysis of \({\text {O}_2}^{{\cdot }^{-}}\) dismutation. J Chem Soc Dalton Trans 13:2689–2696

    Article  CAS  Google Scholar 

  • Batinic-Haberle I, Ndengele MM, Cuzzocrea S et al (2009) Lipophilicity is a critical parameter that dominates the efficacy of metalloporphyrins in blocking the development of morphine antinociceptive tolerance through peroxynitrite-mediated pathways. Free Radic Biol Med 46:212–219

    Article  PubMed  CAS  Google Scholar 

  • Batinic-Haberle I, Reboucas JS, Spasojevich I (2010) Superoxide dismutase mimics: chemistry, pharmacology and therapeutic potential. Antioxid Redox Signal (epub ahead of print)

  • Beckman JS, Beckman TW, Chen J et al (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87:1620–1624

    Article  PubMed  CAS  Google Scholar 

  • Bettoni I, Comelli F, Rossini C et al (2008) Glial TLR4 receptor as new target to treat neuropathic pain: efficacy of a new receptor antagonist in a model of peripheral nerve injury in mice. Glia 56:1312–1319

    Article  PubMed  Google Scholar 

  • Bindokas VP, Jordan J, Lee CC et al (1996) Superoxide production in rat hippocampal neurons: selective imaging with hydroethidine. J Neurosci 16:1324–1336

    PubMed  CAS  Google Scholar 

  • Bito H, Deisseroth K, Tsien RW (1996) CREB phosphorylation and dephosphorylation: a Ca(2+)- and stimulus duration-dependent switch for hippocampal gene expression. Cell 87:1203–1214

    Article  PubMed  CAS  Google Scholar 

  • Boettger MK, Üceyler N, Zelenka M et al (2007) Differences in inflammatory pain in nNOS-, iNOS- and eNOS-deficient mice. Eur J Pain 11:810–818

    Article  PubMed  CAS  Google Scholar 

  • Boje KM, Arora PK (1992) Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death. Brain Res 587:250–256

    Article  PubMed  CAS  Google Scholar 

  • Boue-Grabot E, Archambault V, Seguela P (2000) A protein kinase C site highly conserved in P2X subunits controls the desensitization kinetics of P2X(2) ATP-gated channels. J Biol Chem 275:10190–10195

    Article  PubMed  CAS  Google Scholar 

  • Bredt DS, Snyder SH (1992) Nitric oxide, a novel neuronal messenger. Neuron 8:3–11

    Article  PubMed  CAS  Google Scholar 

  • Brennan AM, Suh SW, Won SJ et al (2009) NADPH oxidase is the primary source of superoxide induced by NMDA receptor activation. Nat Neurosci 12:857–863

    Article  PubMed  CAS  Google Scholar 

  • Bryant C, Fitzgerald KA (2009) Molecular mechanisms involved in inflammasome activation. Trends Cell Biol 19:455–464

    Article  PubMed  CAS  Google Scholar 

  • Bryant L, Doyle T, Chen Z et al (2009) Spinal ceramide and neuronal apoptosis in morphine antinociceptive tolerance. Neurosci Lett 463:49–53

    Article  PubMed  CAS  Google Scholar 

  • Budai D, Khasabov SG, Mantyh PW et al (2007) NK-1 receptors modulate the excitability of ON cells in the rostral ventromedial medulla. J Neurophysiol 97:1388–1395

    Article  PubMed  CAS  Google Scholar 

  • Bujalska M, Gumulka SW (2008) Effect of cyclooxygenase and nitric oxide synthase inhibitors on vincristine induced hyperalgesia in rats. Pharmacol Rep 60:735–741

    PubMed  CAS  Google Scholar 

  • Bujalska M, Makulska-Nowak H (2009) Bradykinin receptors antagonists and nitric oxide synthase inhibitors in vincristine and streptozotocin induced hyperalgesia in chemotherapy and diabetic neuropathy rat model. Neuro Endocrinol Lett 30:144–152

    PubMed  CAS  Google Scholar 

  • Bujalska M, Tatarkiewicz J, de Corde A et al (2008) Effect of cyclooxygenase and nitric oxide synthase inhibitors on streptozotocin-induced hyperalgesia in rats. Pharmacology 81:151–157

    Article  PubMed  CAS  Google Scholar 

  • Calabrese V, Mancuso C, Calvani M et al (2007) Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat Rev Neurosci 8:766–775

    Article  PubMed  CAS  Google Scholar 

  • Callsen-Cencic P, Hoheisel U, Kaske A et al (1999) The controversy about spinal neuronal nitric oxide synthase: under which conditions is it up- or downregulated? Cell Tissue Res 295:183–194

    Article  PubMed  CAS  Google Scholar 

  • Cao L, Tanga FY, Deleo JA (2009) The contributing role of CD14 in toll-like receptor 4 dependent neuropathic pain. Neuroscience 158:896–903

    Article  PubMed  CAS  Google Scholar 

  • Carlson JD, Maire JJ, Martenson ME et al (2007) Sensitization of pain-modulating neurons in the rostral ventromedial medulla after peripheral nerve injury. J Neurosci 27:13222–13231

    Article  PubMed  CAS  Google Scholar 

  • Caudle RM, Perez FM, Del Valle-Pinero AY et al (2005) Spinal cord NR1 serine phosphorylation and NR2B subunit suppression following peripheral inflammation. Mol Pain 1:25

    Article  PubMed  CAS  Google Scholar 

  • Chan SF, Sucher NJ (2001) An NMDA receptor signaling complex with protein phosphatase 2A. J Neurosci 21:7985–7992

    PubMed  CAS  Google Scholar 

  • Chang M, Li W, Peng Y-L et al (2009) Involvement of NMDA receptor in nociceptive effects elicited by intrathecal [Tyr6] [gamma]2-MSH(6–12), and the interaction with nociceptin/orphanin FQ in pain modulation in mice. Brain Res 1271:36–48

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Huang LY (1992) Protein kinase C reduces Mg2+ block of NMDA-receptor channels as a mechanism of modulation. Nature 356:521–523

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Muscoli C, Doyle T et al (2010) NMDA-receptor activation and nitroxidative regulation of the glutamatergic pathway during nociceptive processing. Pain 149:100–106

    Article  PubMed  CAS  Google Scholar 

  • Cheret C, Gervais A, Lelli A et al (2008) Neurotoxic activation of microglia is promoted by a nox1-dependent NADPH oxidase. J Neurosci 28:12039–12051

    Article  PubMed  CAS  Google Scholar 

  • Chu YC, Guan Y, Skinner J et al (2005) Effect of genetic knockout or pharmacologic inhibition of neuronal nitric oxide synthase on complete Freund’s adjuvant-induced persistent pain. Pain 119:113–123

    Article  PubMed  CAS  Google Scholar 

  • Chuang HH, Lin S (2009) Oxidative challenges sensitize the capsaicin receptor by covalent cysteine modification. Proc Natl Acad Sci USA 106:20097–20102

    PubMed  CAS  Google Scholar 

  • Coderre TJ, Melzack R (1991) Central neural mediators of secondary hyperalgesia following heat injury in rats: neuropeptides and excitatory amino acids. Neurosci Lett 131:71–74

    Article  PubMed  CAS  Google Scholar 

  • Coderre TJ, Melzack R (1992) The contribution of excitatory amino acids to central sensitization and persistent nociception after formalin-induced tissue injury. J Neurosci 12:3665–3670

    PubMed  CAS  Google Scholar 

  • Colton CA, Gilbert DL (1987) Production of superoxide anions by a CNS macrophage, the microglia. FEBS Lett 223:284–288

    Article  PubMed  CAS  Google Scholar 

  • Cork RJ, Perrone ML, Bridges D et al (1998) A web-accessible digital atlas of the distribution of nitric oxide synthase in the mouse brain. Prog Brain Res 118:37–50

    Article  PubMed  CAS  Google Scholar 

  • Coutinho SV, Urban MO, Gebhart GF (1998) Role of glutamate receptors and nitric oxide in the rostral ventromedial medulla in visceral hyperalgesia. Pain 78:59–69

    Article  PubMed  CAS  Google Scholar 

  • Coutinho SV, Urban MO, Gebhart GF (2001) The role of CNS NMDA receptors and nitric oxide in visceral hyperalgesia. Eur J Pharmacol 429:319–325

    Article  PubMed  CAS  Google Scholar 

  • Cui Y, Chen Y, Zhi JL et al (2006) Activation of p38 mitogen-activated protein kinase in spinal microglia mediates morphine antinociceptive tolerance. Brain Res 1069:235–243

    Article  PubMed  CAS  Google Scholar 

  • Cuzzocrea S, Salvemini D (2007) Molecular mechanisms involved in the reciprocal regulation of cyclooxygenase and nitric oxide synthase enzymes. Kidney Int 71:290–297

    Article  PubMed  CAS  Google Scholar 

  • De Alba J, Clayton NM, Collins SD et al (2006) GW274150, a novel and highly selective inhibitor of the inducible isoform of nitric oxide synthase (iNOS), shows analgesic effects in rat models of inflammatory and neuropathic pain. Pain 120:170–181

    Article  PubMed  CAS  Google Scholar 

  • Downen M, Zhao ML, Lee P et al (1999) Neuronal nitric oxide synthase expression in developing and adult human CNS. J Neuropathol Exp Neurol 58:12–21

    Article  PubMed  CAS  Google Scholar 

  • Doyle T, Bryant L, Batinic-Haberle I et al (2009) Supraspinal inactivation of mitochondrial superoxide dismutase is a source of peroxynitrite in the development of morphine antinociceptive tolerance. Neuroscience 164:702–710

    Article  PubMed  CAS  Google Scholar 

  • Dreyer J, Hirlinger D, Müller-Esterl W et al (2003) Spinal upregulation of the nitric oxide synthase-interacting protein NOSIP in a rat model of inflammatory pain. Neurosci Lett 350:13–16

    Article  PubMed  CAS  Google Scholar 

  • Eligini S, Habib A, Lebret M et al (2001) Induction of cyclo-oxygenase-2 in human endothelial cells by SIN-1 in the absence of prostaglandin production. Br J Pharmacol 133:1163–1171

    Article  PubMed  CAS  Google Scholar 

  • Fields HL, Heinricher MM, Mason P (1991) Neurotransmitters in nociceptive modulatory circuits. Annu Rev Neurosci 14:219–245

    Article  PubMed  CAS  Google Scholar 

  • Fridovich I (1995) Superoxide radical and superoxide dismutases. Annu Rev Biochem 64:97–112

    Article  PubMed  CAS  Google Scholar 

  • Gao X, Kim HK, Chung JM et al (2007) Reactive oxygen species (ROS) are involved in enhancement of NMDA-receptor phosphorylation in animal models of pain. Pain 131:262–271

    Article  PubMed  CAS  Google Scholar 

  • Garry EM, Moss A, Delaney A et al (2003) Neuropathic sensitization of behavioral reflexes and spinal NMDA receptor/CaM kinase II interactions are disrupted in PSD-95 mutant mice. Curr Biol 13:321–328

    Article  PubMed  CAS  Google Scholar 

  • Garthwaite J, Boulton CL (1995) Nitric oxide signaling in the central nervous system. Annu Rev Physiol 57:683–706

    Article  PubMed  CAS  Google Scholar 

  • Garthwaite J, Garthwaite G, Palmer RM et al (1989) NMDA receptor activation induces nitric oxide synthesis from arginine in rat brain slices. Eur J Pharmacol 172:413–416

    Article  PubMed  CAS  Google Scholar 

  • Girouard H, Wang G, Gallo EF et al (2009) NMDA receptor activation increases free radical production through nitric oxide and NOX2. J Neurosci 29:2545–2552

    Article  PubMed  CAS  Google Scholar 

  • Gius D, Botero A, Shah S et al (1999) Intracellular oxidation/reduction status in the regulation of transcription factors NF-kappaB and AP-1. Toxicol Lett 106:93–106

    Article  PubMed  CAS  Google Scholar 

  • Goettl VM, Larson AA (1996) Nitric oxide mediates long-term hyperalgesic and antinociceptive effects of the N-terminus of substance P in the formalin assay in mice. Pain 67:435–441

    Article  PubMed  CAS  Google Scholar 

  • Goff JR, Burkey AR, Goff DJ et al (1998) Reorganization of the spinal dorsal horn in models of chronic pain: correlation with behaviour. Neuroscience 82:559–574

    Article  PubMed  CAS  Google Scholar 

  • Goldstein S, Merenyi G, Russo A et al (2003) The role of oxoammonium cation in the SOD-mimic activity of cyclic nitroxides. J Am Chem Soc 125:789–795

    Article  PubMed  CAS  Google Scholar 

  • Goldstein S, Samuni A, Hideg K et al (2006) Structure-activity relationship of cyclic nitroxides as SOD mimics and scavengers of nitrogen dioxide and carbonate radicals. J Phys Chem A 110:3679–3685

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Hernandez T, Rustioni A (1999) Expression of three forms of nitric oxide synthase in peripheral nerve regeneration. J Neurosci Res 55:198–207

    Article  PubMed  CAS  Google Scholar 

  • Gordh T, Sharma HS, Alm P et al (1998) Spinal nerve lesion induces upregulation of neuronal nitric oxide synthase in the spinal cord. An immunohistochemical investigation in the rat. Amino Acids 14:105–112

    Article  PubMed  CAS  Google Scholar 

  • Gorg B, Wettstein M, Metzger S et al (2005) Lipopolysaccharide-induced tyrosine nitration and inactivation of hepatic glutamine synthetase in the rat. Hepatology 41:1065–1073

    Article  PubMed  CAS  Google Scholar 

  • Gryglewski RJ, Palmer RM, Moncada S (1986) Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature 320:454–456

    Article  PubMed  CAS  Google Scholar 

  • Guhring H, Gorig M, Ates M et al (2000) Suppressed injury-induced rise in spinal prostaglandin E2 production and reduced early thermal hyperalgesia in iNOS-deficient mice. J Neurosci 20:6714–6720

    PubMed  CAS  Google Scholar 

  • Gunasekar PG, Kanthasamy AG, Borowitz JL et al (1995) NMDA receptor activation produces concurrent generation of nitric oxide and reactive oxygen species: implication for cell death. J Neurochem 65:2016–2021

    Article  PubMed  CAS  Google Scholar 

  • Guo W, Robbins MT, Wei F et al (2006) Supraspinal brain-derived neurotrophic factor signaling: a novel mechanism for descending pain facilitation. J Neurosci 26:126–137

    Article  PubMed  CAS  Google Scholar 

  • Guo W, Wang H, Watanabe M et al (2007) Glial-cytokine-neuronal interactions underlying the mechanisms of persistent pain. J Neurosci 27:6006–6018

    Article  PubMed  CAS  Google Scholar 

  • Habib A, Bernard C, Lebret M et al (1997) Regulation of the expression of cyclooxygenase-2 by nitric oxide in rat peritoneal macrophages. J Immunol 158:3845–3851

    PubMed  CAS  Google Scholar 

  • Haley JE, Sullivan AF, Dickenson AH (1990) Evidence for spinal N-methyl-d-aspartate receptor involvement in prolonged chemical nociception in the rat. Brain Res 518:218–226

    Article  PubMed  CAS  Google Scholar 

  • Handy RL, Moore PK (1998) A comparison of the effects of L-NAME, 7-NI and L-NIL on carrageenan-induced hindpaw oedema and NOS activity. Br J Pharmacol 123:1119–1126

    Article  PubMed  CAS  Google Scholar 

  • Hao JX, Xu XJ (1996) Treatment of a chronic allodynia-like response in spinally injured rats: effects of systemically administered nitric oxide synthase inhibitors. Pain 66:313–319

    Article  PubMed  CAS  Google Scholar 

  • Harrigan TJ, Abdullaev IF, Jourd’heuil D et al (2008) Activation of microglia with zymosan promotes excitatory amino acid release via volume-regulated anion channels: the role of NADPH oxidases. J Neurochem 106:2449–2462

    Article  PubMed  CAS  Google Scholar 

  • Hongpaisan J, Winters CA, Andrews SB (2004) Strong calcium entry activates mitochondrial superoxide generation, upregulating kinase signaling in hippocampal neurons. J Neurosci 24:10878–10887

    Article  PubMed  CAS  Google Scholar 

  • Hooper DC, Scott GS, Zborek A et al (2000) Uric acid, a peroxynitrite scavenger, inhibits CNS inflammation, blood-CNS barrier permeability changes, and tissue damage in a mouse model of multiple sclerosis. FASEB J 14:691–698

    PubMed  CAS  Google Scholar 

  • Hu JH, Chernoff K, Pelech S et al (2003) Protein kinase and protein phosphatase expression in the central nervous system of G93A mSOD over-expressing mice. J Neurochem 85:422–431

    Article  PubMed  CAS  Google Scholar 

  • Huie RE, Padmaja S (1993) The reaction of no with superoxide. Free Radic Res Commun 18:195–199

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson MR, Zhang Y, Shridhar M et al (2010) Evidence that opioids may have toll-like receptor 4 and MD-2 effects. Brain Behav Immun 24:83–95

    Article  PubMed  CAS  Google Scholar 

  • Ibi M, Matsuno K, Shiba D et al (2008) Reactive oxygen species derived from NOX1/NADPH oxidase enhance inflammatory pain. J Neurosci 28:9486–9494

    Article  PubMed  CAS  Google Scholar 

  • Ignarro LJ (1990) Haem-dependent activation of guanylate cyclase and cyclic GMP formation by endogenous nitric oxide: a unique transduction mechanism for transcellular signaling. Pharmacol Toxicol 67:1–7

    Article  PubMed  CAS  Google Scholar 

  • Ignarro LJ (1991) Heme-dependent activation of guanylate cyclase by nitric oxide: a novel signal transduction mechanism. Blood Vessels 28:67–73

    PubMed  CAS  Google Scholar 

  • Ikeda H, Heinke B, Ruscheweyh R et al (2003) Synaptic plasticity in spinal lamina I projection neurons that mediate hyperalgesia. Science 299:1237

    Article  PubMed  CAS  Google Scholar 

  • Ikeda H, Stark J, Fischer H et al (2006) Synaptic amplifier of inflammatory pain in the spinal dorsal horn. Science 312:1659–1662

    Article  PubMed  CAS  Google Scholar 

  • Inoue T, Mashimo T, Shibuta S et al (1997) Intrathecal administration of a new nitric oxide donor, NOC-18, produces acute thermal hyperalgesia in the rat. J Neurol Sci 153:1–7

    Article  PubMed  CAS  Google Scholar 

  • Jensen MP, Riley DP (2002) Peroxynitrite decomposition activity of iron porphyrin complexes. Inorg Chem 41:4788–4797

    Article  PubMed  CAS  Google Scholar 

  • Johanek L, Shim B, Meyer R (eds) (2006) Primary hyperalgesia and nociceptor sensisitization. In: Aminoff MJ, Boller F, Swaab DF (series eds) Clinical handbook of neurology, Cervero F, Jensen TS (eds) Pain, vol 81, 3rd series. Elsevier, Edinburgh, pp 35–48

  • Kawasaki Y, Kohno T, Zhuang ZY et al (2004) Ionotropic and metabotropic receptors, protein kinase A, protein kinase C, and Src contribute to C-fiber-induced ERK activation and cAMP response element-binding protein phosphorylation in dorsal horn neurons, leading to central sensitization. J Neurosci 24:8310–8321

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki T, Kitao T, Nakagawa K et al (2007) Nitric oxide-induced apoptosis in cultured rat astrocytes: protection by edaravone, a radical scavenger. Glia 55:1325–1333

    Article  PubMed  Google Scholar 

  • Keeble JE, Bodkin JV, Liang L et al (2009) Hydrogen peroxide is a novel mediator of inflammatory hyperalgesia, acting via transient receptor potential vanilloid 1-dependent and independent mechanisms. Pain 141:135–142

    Article  PubMed  CAS  Google Scholar 

  • Kettle AJ, van Dalen CJ, Winterbourn CC (1997) Peroxynitrite and myeloperoxidase leave the same footprint in protein nitration. Redox Rep 3:257–258

    PubMed  CAS  Google Scholar 

  • Khalil Z, Liu T, Helme RD (1999) Free radicals contribute to the reduction in peripheral vascular responses and the maintenance of thermal hyperalgesia in rats with chronic constriction injury. Pain 79:31–37

    Article  PubMed  CAS  Google Scholar 

  • Khattab MM (2006) TEMPOL, a membrane-permeable radical scavenger, attenuates peroxynitrite- and superoxide anion-enhanced carrageenan-induced paw edema and hyperalgesia: a key role for superoxide anion. Eur J Pharmacol 548:167–173

    Article  PubMed  CAS  Google Scholar 

  • Kim HK, Park SK, Zhou JL et al (2004) Reactive oxygen species (ROS) play an important role in a rat model of neuropathic pain. Pain 111:116–124

    Article  PubMed  CAS  Google Scholar 

  • Kim HY, Wang J, Lu Y et al (2009) Superoxide signaling in pain is independent of nitric oxide signaling. Neuroreport 20:1424–1428

    Article  PubMed  CAS  Google Scholar 

  • Kirsch M, De Groot H (2001) NAD(P)H, a directly operating antioxidant? FASEB J 15:1569–1574

    Article  PubMed  CAS  Google Scholar 

  • Kitto KF, Haley JE, Wilcox GL (1992) Involvement of nitric oxide in spinally mediated hyperalgesia in the mouse. Neurosci Lett 148:1–5

    Article  PubMed  CAS  Google Scholar 

  • Klann E (1998) Cell-permeable scavengers of superoxide prevent long-term potentiation in hippocampal area CA1. J Neurophysiol 80:452–457

    PubMed  CAS  Google Scholar 

  • Klann E, Roberson ED, Knapp LT et al (1998) A role for superoxide in protein kinase C activation and induction of long-term potentiation. J Biol Chem 273:4516–4522

    Article  PubMed  CAS  Google Scholar 

  • Knapp LT, Kanterewicz BI, Hayes EL et al (2001) Peroxynitrite-induced tyrosine nitration and inhibition of protein kinase C. Biochem Biophys Res Commun 286:764–770

    Article  PubMed  CAS  Google Scholar 

  • Knepler JL Jr, Taher LN, Gupta MP et al (2001) Peroxynitrite causes endothelial cell monolayer barrier dysfunction. Am J Physiol Cell Physiol 281:C1064–C1075

    PubMed  CAS  Google Scholar 

  • Kolesnikov YA, Chereshnev I, Criesta M et al (2009) Opposing actions of neuronal nitric oxide synthase isoforms in formalin-induced pain in mice. Brain Res 1289:14–21

    Article  PubMed  CAS  Google Scholar 

  • Komeima K, Hayashi Y, Naito Y et al (2000) Inhibition of neuronal nitric-oxide synthase by calcium/calmodulin-dependent protein kinase IIalpha through Ser847 phosphorylation in NG108–15 neuronal cells. J Biol Chem 275:28139–28143

    PubMed  CAS  Google Scholar 

  • Kwak KH, Han CG, Lee SH et al (2009) Reactive oxygen species in rats with chronic post-ischemia pain. Acta Anaesthesiol Scand 53:648–656

    Article  PubMed  CAS  Google Scholar 

  • Lafon-Cazal M, Pietri S, Culcasi M et al (1993) NMDA-dependent superoxide production and neurotoxicity. Nature 364:535–537

    Article  PubMed  CAS  Google Scholar 

  • Landino LM, Crews BC, Timmons MD et al (1996) Peroxynitrite, the coupling product of nitric oxide and superoxide, activates prostaglandin biosynthesis. Proc Natl Acad Sci USA 93:15069–15074

    Article  PubMed  CAS  Google Scholar 

  • Larsson M, Broman J (2006) Pathway-specific bidirectional regulation of Ca2+/calmodulin-dependent protein kinase II at spinal nociceptive synapses after acute noxious stimulation. J Neurosci 26:4198–4205

    Article  PubMed  CAS  Google Scholar 

  • Larsson M, Broman J (2008) Translocation of GluR1-containing AMPA receptors to a spinal nociceptive synapse during acute noxious stimulation. J Neurosci 28:7084–7090

    Article  PubMed  CAS  Google Scholar 

  • Lassegue B, Clempus RE (2003) Vascular NAD(P)H oxidases: specific features, expression, and regulation. Am J Physiol Regul Integr Comp Physiol 285:R277–R297

    PubMed  CAS  Google Scholar 

  • Lawand NB, Willis WD, Westlund KN (1997) Blockade of joint inflammation and secondary hyperalgesia by l-NAME, a nitric oxide synthase inhibitor. NeuroReport 8:895–899

    Article  PubMed  CAS  Google Scholar 

  • Leanez S, Hervera A, Pol O (2009) Peripheral antinociceptive effects of mu- and delta-opioid receptor agonists in NOS2 and NOS1 knockout mice during chronic inflammatory pain. Eur J Pharmacol 602:41–49

    Article  PubMed  CAS  Google Scholar 

  • Lee I, Kim HK, Kim JH et al (2007) The role of reactive oxygen species in capsaicin-induced mechanical hyperalgesia and in the activities of dorsal horn neurons. Pain 133:9–17

    Article  PubMed  CAS  Google Scholar 

  • Lee JS, Zhang Y, Ro JY (2009) Involvement of neuronal, inducible and endothelial nitric oxide synthases in capsaicin-induced muscle hypersensitivity. Eur J Pain 13:924–928

    Article  PubMed  CAS  Google Scholar 

  • Leonard AS, Hell JW (1997) Cyclic AMP-dependent protein kinase and protein kinase C phosphorylate N-methyl-d-aspartate receptors at different sites. J Biol Chem 272:12107–12115

    Article  PubMed  CAS  Google Scholar 

  • Lewis SS, Hutchinson MR, Rezvani N et al (2009) Evidence that intrathecal morphine-3-glucuronide may cause pain enhancement via toll-like receptor 4/MD-2 and interleukin-1beta. Neuroscience 165:569–583

    Article  CAS  Google Scholar 

  • Li L, Shou Y, Borowitz JL et al (2001) Reactive oxygen species mediate pyridostigmine-induced neuronal apoptosis: involvement of muscarinic and NMDA receptors. Toxicol Appl Pharmacol 177:17–25

    Article  PubMed  CAS  Google Scholar 

  • Li WW, Guo TZ, Liang D et al (2009) The NALP1 inflammasome controls cytokine production and nociception in a rat fracture model of complex regional pain syndrome. Pain 147:277–286

    Article  PubMed  CAS  Google Scholar 

  • Lievens JC, Bernal F, Forni C et al (2000) Characterization of striatal lesions produced by glutamate uptake alteration: cell death, reactive gliosis, and changes in GLT1 and GADD45 mRNA expression. Glia 29:222–232

    Article  PubMed  CAS  Google Scholar 

  • Lin FY, Chen YH, Tasi JS et al (2006) Endotoxin induces toll-like receptor 4 expression in vascular smooth muscle cells via NADPH oxidase activation and mitogen-activated protein kinase signaling pathways. Arterioscler Thromb Vasc Biol 26:2630–2637

    Article  PubMed  CAS  Google Scholar 

  • Lindenau J, Noack H, Possel H et al (2000) Cellular distribution of superoxide dismutases in the rat CNS. Glia 29:25–34

    Article  PubMed  CAS  Google Scholar 

  • Lisman J, Schulman H, Cline H (2002) The molecular basis of CaMKII function in synaptic and behavioural memory. Nat Rev Neurosci 3:175–190

    Article  PubMed  CAS  Google Scholar 

  • Liu T, Knight KR, Tracey DJ (2000) Hyperalgesia due to nerve injury-role of peroxynitrite. Neuroscience 97:125–131

    Article  PubMed  CAS  Google Scholar 

  • Liu W, Wang CH, Cui Y et al (2006) Inhibition of neuronal nitric oxide synthase antagonizes morphine antinociceptive tolerance by decreasing activation of p38 MAPK in the spinal microglia. Neurosci Lett 410:174–177

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Fa M, Ninan I et al (2007) Alpha-synuclein involvement in hippocampal synaptic plasticity: role of NO, cGMP, cGK and CaMKII. Eur J Neurosci 25:3583–3596

    Article  PubMed  Google Scholar 

  • Loeser JD (2006) Pain as a disease. In: Aminoff MJ, Boller F, Swaab DF (Series eds) Clinical handbook of neurology, Cervero F and Jensen TS (eds) Pain, vol 81, 3rd series. Elsevier, Edinburgh, pp 11–20

  • Lui PW, Lee CH (2004) Preemptive effects of intrathecal cyclooxygenase inhibitor or nitric oxide synthase inhibitor on thermal hypersensitivity following peripheral nerve injury. Life Sci 75:2527–2538

    Article  PubMed  CAS  Google Scholar 

  • Luo ZD, Cizkova D (2000) The role of nitric oxide in nociception. Curr Rev Pain 4:459–466

    PubMed  CAS  Google Scholar 

  • Ma F, Zhang L, Westlund KN (2009) Reactive oxygen species mediate TNFR1 increase after TRPV1 activation in mouse DRG neurons. Mol Pain 5:31

    Article  PubMed  CAS  Google Scholar 

  • Macmillan-Crow LA, Cruthirds DL (2001) Invited review: manganese superoxide dismutase in disease. Free Radic Res 34:325–336

    Article  PubMed  CAS  Google Scholar 

  • MacMillan-Crow LA, Thompson JA (1999) Tyrosine modifications and inactivation of active site manganese superoxide dismutase mutant (Y34F) by peroxynitrite. Arch Biochem Biophys 366:82–88

    Article  PubMed  CAS  Google Scholar 

  • MacMillan-Crow LA, Cruthirds DL, Ahki KM et al (2001) Mitochondrial tyrosine nitration precedes chronic allograft nephropathy. Free Radic Biol Med 31:1603–1608

    Article  PubMed  CAS  Google Scholar 

  • Malmberg AB, Yaksh TL (1993) Spinal nitric oxide synthesis inhibition blocks NMDA-induced thermal hyperalgesia and produces antinociception in the formalin test in rats. Pain 54:291–300

    Article  PubMed  CAS  Google Scholar 

  • Mantyh PW, Hunt SP (2004) Setting the tone: superficial dorsal horn projection neurons regulate pain sensitivity. Trends Neurosci 27:582–584

    Article  PubMed  CAS  Google Scholar 

  • Mantyh PW, Rogers SD, Honore P et al (1997) Inhibition of hyperalgesia by ablation of lamina I spinal neurons expressing the substance P receptor. Science 278:275–279

    Article  PubMed  CAS  Google Scholar 

  • Markey CM, Alward A, Weller PE et al (1987) Quantitative studies of hydroperoxide reduction by prostaglandin H synthase. Reducing substrate specificity and the relationship of peroxidase to cyclooxygenase activities. J Biol Chem 262:6266–6279

    PubMed  CAS  Google Scholar 

  • Martucci C, Trovato AE, Costa B et al (2008) The purinergic antagonist PPADS reduces pain related behaviours and interleukin-1[beta], interleukin-6, iNOS and nNOS overproduction in central and peripheral nervous system after peripheral neuropathy in mice. Pain 137:81–95

    Article  PubMed  CAS  Google Scholar 

  • Matata BM, Galinanes M (2002) Peroxynitrite is an essential component of cytokines production mechanism in human monocytes through modulation of nuclear factor-kappa B DNA binding activity. J Biol Chem 277:2330–2335

    Article  PubMed  CAS  Google Scholar 

  • Mayer DJ, Mao J, Price DD (1995) The development of morphine tolerance and dependence is associated with translocation of protein kinase C. Pain 61:365–374

    Article  PubMed  CAS  Google Scholar 

  • Meller ST, Gebhart GF (1993) Nitric oxide (NO) and nociceptive processing in the spinal cord. Pain 52:127–136

    Article  PubMed  CAS  Google Scholar 

  • Meller ST, Pechman PS, Gebhart GF et al (1992) Nitric oxide mediates the thermal hyperalgesia produced in a model of neuropathic pain in the rat. Neuroscience 50:7–10

    Article  PubMed  CAS  Google Scholar 

  • Mennerick S, Shen W, Xu W et al (1999) Substrate turnover by transporters curtails synaptic glutamate transients. J Neurosci 19:9242–9251

    PubMed  CAS  Google Scholar 

  • Merskey H, Bogduk N (eds) (1994) Part III: pain terms, a current list with definitions and notes on usage. Classification of chronic pain, IASP task force on taxonomy. IASP press, Seattle

    Google Scholar 

  • Miki K, Zhou QQ, Guo W et al (2002) Changes in gene expression and neuronal phenotype in brain stem pain modulatory circuitry after inflammation. J Neurophysiol 87:750–760

    PubMed  CAS  Google Scholar 

  • Milligan ED, Watkins LR (2009) Pathological and protective roles of glia in chronic pain. Nat Rev Neurosci 10:23–36

    Article  PubMed  CAS  Google Scholar 

  • Mollace V, Muscoli C, Masini E et al (2005) Modulation of prostaglandin biosynthesis by nitric oxide and nitric oxide donors. Pharmacol Rev 57:217–252

    Article  PubMed  CAS  Google Scholar 

  • Moore PK, Oluyomi AO, Babbedge RC et al (1991) L-NG-nitro arginine methyl ester exhibits antinociceptive activity in the mouse. Br J Pharmacol 102:198–202

    PubMed  CAS  Google Scholar 

  • Murphy S (2000) Production of nitric oxide by glial cells: regulation and potential roles in the CNS. Glia 29:1–13

    Article  PubMed  CAS  Google Scholar 

  • Muscoli C, Cuzzocrea S, Riley DP et al (2003) On the selectivity of superoxide dismutase mimetics and its importance in pharmacological studies. Br J Pharmacol 140:445–460

    Article  PubMed  CAS  Google Scholar 

  • Muscoli C, Mollace V, Wheatley J et al (2004) Superoxide-mediated nitration of spinal manganese superoxide dismutase: a novel pathway in N-methyl-d-aspartate-mediated hyperalgesia. Pain 111:96–103

    Article  PubMed  CAS  Google Scholar 

  • Muscoli C, Visalli V, Colica C et al (2005) The effect of inflammatory stimuli on NMDA-related activation of glutamine synthase in human cultured astroglial cells. Neurosci Lett 373:184–188

    Article  PubMed  CAS  Google Scholar 

  • Muscoli C, Cuzzocrea S, Ndengele MM et al (2007) Therapeutic manipulation of peroxynitrite attenuates the development of opiate-induced antinociceptive tolerance in mice. J Clin Invest 117:3530–3539

    Article  PubMed  CAS  Google Scholar 

  • Nakahira K, Kim HP, Geng XH et al (2006) Carbon monoxide differentially inhibits TLR signaling pathways by regulating ROS-induced trafficking of TLRs to lipid rafts. J Exp Med 203:2377–2389

    Article  PubMed  CAS  Google Scholar 

  • Nakamura A, Fujita M, Shiomi H (1996) Involvement of endogenous nitric oxide in the mechanism of bradykinin-induced peripheral hyperalgesia. Br J Pharmacol 117:407–412

    PubMed  CAS  Google Scholar 

  • Namgaladze D, Shcherbyna I, Kienhöfer J et al (2005) Superoxide targets calcineurin signaling in vascular endothelium. Biochem Biophys Res Commun 334:1061–1067

    Article  PubMed  CAS  Google Scholar 

  • National Centers for Health Statistics (2006) Health, United States, 2006: with chartbook on trends in the health of Americans, special feature: pain. Services, U. S. D. o. H. a. H., pp 68–87

  • Ndengele MM, Muscoli C, Wang ZQ et al (2005) Superoxide potentiates NF-kappaB activation and modulates endotoxin-induced cytokine production in alveolar macrophages. Shock 23:186–193

    Article  PubMed  CAS  Google Scholar 

  • Ndengele MM, Cuzzocrea S, Esposito E et al (2008) Cyclooxygenases 1 and 2 contribute to peroxynitrite-mediated inflammatory pain hypersensitivity. FASEB J 22:3154–3164

    Article  PubMed  CAS  Google Scholar 

  • Ndengele MM, Cuzzocrea S, Masini E et al (2009) Spinal ceramide modulates the development of morphine antinociceptive tolerance via peroxynitrite-mediated nitroxidative stress and neuroimmune activation. J Pharmacol Exp Ther 329:64–75

    Article  PubMed  CAS  Google Scholar 

  • Negi G, Kumar A, Sharma SS (2009) Concurrent targeting of nitrosative stress-PARP pathway corrects functional, behavioral and biochemical deficits in experimental diabetic neuropathy. Biochem Biophys Res Commun (epub ahead of print)

  • Noack H, Lindenau J, Rothe F et al (1998) Differential expression of superoxide dismutase isoforms in neuronal and glial compartments in the course of excitotoxically mediated neurodegeneration: relation to oxidative and nitrergic stress. Glia 23:285–297

    Article  PubMed  CAS  Google Scholar 

  • Nowicky AV, Bindman LJ (1993) The nitric oxide synthase inhibitor, N-monomethyl-l-arginine blocks induction of a long-term potentiation-like phenomenon in rat medial frontal cortical neurons in vitro. J Neurophysiol 70:1255–1259

    PubMed  CAS  Google Scholar 

  • O’Dell TJ, Hawkins RD, Kandel ER et al (1991) Tests of the roles of two diffusible substances in long-term potentiation: evidence for nitric oxide as a possible early retrograde messenger. Proc Natl Acad Sci USA 88:11285–11289

    Article  PubMed  Google Scholar 

  • Okabe M, Saito S, Saito T et al (1998) Histochemical localization of superoxide dismutase activity in rat brain. Free Radic Biol Med 24:1470–1476

    Article  PubMed  CAS  Google Scholar 

  • Omote K, Hazama K, Kawamata T et al (2001) Peripheral nitric oxide in carrageenan-induced inflammation. Brain Res 912:171–175

    Article  PubMed  CAS  Google Scholar 

  • Osborne MG, Coderre TJ (1999) Effects of intrathecal administration of nitric oxide synthase inhibitors on carrageenan-induced thermal hyperalgesia. Br J Pharmacol 126:1840–1846

    Article  PubMed  CAS  Google Scholar 

  • Osuka K, Watanabe Y, Usuda N et al (2002) Phosphorylation of neuronal nitric oxide synthase at Ser847 by CaM-KII in the hippocampus of rat brain after transient forebrain ischemia. J Cereb Blood Flow Metab 22:1098–1106

    Article  PubMed  CAS  Google Scholar 

  • Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424

    Article  PubMed  CAS  Google Scholar 

  • Palsson-McDermott EM, O’Neill LA (2004) Signal transduction by the lipopolysaccharide receptor, toll-like receptor-4. Immunology 113:153–162

    Article  PubMed  CAS  Google Scholar 

  • Park HS, Jung HY, Park EY et al (2004) Cutting edge: direct interaction of TLR4 with NAD(P)H oxidase 4 isozyme is essential for lipopolysaccharide-induced production of reactive oxygen species and activation of NF-{kappa}B. J Immunol 173:3589–3593

    PubMed  CAS  Google Scholar 

  • Park ES, Gao X, Chung JM et al (2006) Levels of mitochondrial reactive oxygen species increase in rat neuropathic spinal dorsal horn neurons. Neurosci Lett 391:108–111

    Article  PubMed  CAS  Google Scholar 

  • Park JS, Voitenko N, Petralia RS et al (2009) Persistent inflammation induces GluR2 internalization via NMDA receptor-triggered PKC activation in dorsal horn neurons. J Neurosci 29:3206–3219

    Article  PubMed  CAS  Google Scholar 

  • Paschen W, Weser U (1973) Letter: singlet oxygen decontaminating activity of erythrocuprein (superoxide dismutase). Biochim Biophys Acta 327:217–222

    PubMed  CAS  Google Scholar 

  • Pasternack RF, Banth A, Pasternack JM et al (1981) Catalysis of the disproportionation of superoxide by metalloporphyrins. III. J Inorg Biochem 15:261–267

    Article  PubMed  CAS  Google Scholar 

  • Pawate S, Shen Q, Fan F et al (2004) Redox regulation of glial inflammatory response to lipopolysaccharide and interferongamma. J Neurosci Res 77:540–551

    Article  PubMed  CAS  Google Scholar 

  • Politzer IR, Griffin GW, Laseter JL (1971) Singlet oxygen and biological systems. Chem Biol Interact 3:73–93

    Article  PubMed  CAS  Google Scholar 

  • Pollock JS, Nakane M, Buttery LD et al (1993) Characterization and localization of endothelial nitric oxide synthase using specific monoclonal antibodies. Am J Physiol 265:C1379–C1387

    PubMed  CAS  Google Scholar 

  • Porreca F, Ossipov MH, Gebhart GF (2002) Chronic pain and medullary descending facilitation. Trends Neurosci 25:319–325

    Article  PubMed  CAS  Google Scholar 

  • Possel H, Noack H, Putzke J et al (2000) Selective upregulation of inducible nitric oxide synthase (iNOS) by lipopolysaccharide (LPS) and cytokines in microglia: in vitro and in vivo studies. Glia 32:51–59

    Article  PubMed  CAS  Google Scholar 

  • Qian L, Gao X, Pei Z et al (2007) NADPH oxidase inhibitor DPI is neuroprotective at femtomolar concentrations through inhibition of microglia over-activation. Parkinsonism Relat Disord 13(Suppl 3):S316–S320

    Article  PubMed  Google Scholar 

  • Qin L, Liu Y, Wang T et al (2004) NADPH oxidase mediates lipopolysaccharide-induced neurotoxicity and proinflammatory gene expression in activated microglia. J Biol Chem 279:1415–1421

    Article  PubMed  CAS  Google Scholar 

  • Qin L, Li G, Qian X et al (2005) Interactive role of the toll-like receptor 4 and reactive oxygen species in LPS-induced microglia activation. Glia 52:78–84

    Article  PubMed  Google Scholar 

  • Radi R (2004) Nitric oxide, oxidants, and protein tyrosine nitration. Proc Natl Acad Sci USA 101:4003–4008

    Article  PubMed  CAS  Google Scholar 

  • Radi R, Beckman J, Bush K et al (1991) Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J Biol Chem 266:4244–4250

    PubMed  CAS  Google Scholar 

  • Raghavendra V, Tanga F, DeLeo JA (2003) Inhibition of microglial activation attenuates the development but not existing hypersensitivity in a rat model of neuropathy. J Pharmacol Exp Ther 306:624–630

    Article  PubMed  CAS  Google Scholar 

  • Rameau GA, Chiu LY, Ziff EB (2004) Bidirectional regulation of neuronal nitric-oxide synthase phosphorylation at serine 847 by the N-methyl-d-aspartate receptor. J Biol Chem 279:14307–14314

    Article  PubMed  CAS  Google Scholar 

  • Ren K, Dubner R (2007) Pain facilitation and activity-dependent plasticity in pain modulatory circuitry: role of BDNF-TrkB signaling and NMDA receptors. Mol Neurobiol 35:224–235

    Article  PubMed  CAS  Google Scholar 

  • Renfrey S, Downton C, Featherstone J (2003) The painful reality. Nat Rev Drug Discov 2:175–176

    Article  PubMed  CAS  Google Scholar 

  • Ridger VC, Greenacre SA, Handy RL et al (1997) Effect of peroxynitrite on plasma extravasation, microvascular blood flow and nociception in the rat. Br J Pharmacol 122:1083–1088

    Article  PubMed  CAS  Google Scholar 

  • Roberts J, Ossipov MH, Porreca F (2009) Glial activation in the rostroventromedial medulla promotes descending facilitation to mediate inflammatory hypersensitivity. Eur J Neurosci 30:229–241

    Article  PubMed  Google Scholar 

  • Rodrigo J, Springall DR, Uttenthal O et al (1994) Localization of nitric oxide synthase in the adult rat brain. Philos Trans Biol Sci 345:175–221

    Article  CAS  Google Scholar 

  • Rodriguez-Munoz M, de la Torre-Madrid E, Sanchez-Blazquez P et al (2008) NMDAR-nNOS generated zinc recruits PKCgamma to the HINT1-RGS17 complex bound to the C terminus of Mu-opioid receptors. Cell Signal 20:1855–1864

    Article  PubMed  CAS  Google Scholar 

  • Salter M, Strijbos PJLM, Neale S et al (1996) The nitric oxide-cyclic GMP pathway is required for nociceptive signalling at specific loci within the somatosensory pathway. Neuroscience 73:649–655

    Article  PubMed  CAS  Google Scholar 

  • Salvemini D (2001) Analgesic methods using synthetic catalysts for the dismutation of superoxide radicals. US Patent 6,180,620

  • Salvemini D (2002) Analgesic methods using synthetic catalysts for the dismutation of superoxide radicals. US Patent 6,395,725

  • Salvemini D (2009) Peroxynitrite and opiate antinociceptive tolerance: a painful reality. Arch Biochem Biophys 484:238–244

    Article  PubMed  CAS  Google Scholar 

  • Salvemini D, Neumann W (2009a) Targeting peroxynitrite driven nitroxidative stress with synzymes: a novel therapeutic approach in chronic pain management. Life Sci 86:604–614

    Article  PubMed  CAS  Google Scholar 

  • Salvemini D, Neumann WL (2009b) Peroxynitrite: a strategic linchpin of opioid analgesic tolerance. Trends Pharmacol Sci 30:194–202

    Article  PubMed  CAS  Google Scholar 

  • Salvemini D, Timchenko AA (2009) Nitroxidative stress and pain. In: Richardson VJ, Wallace AV (eds) Perspectives on NO in physiology and pathology. Transworld Research Network, Kerala, pp 157–178

    Google Scholar 

  • Salvemini D, Misko TP, Masferrer JL et al (1993) Nitric oxide activates cyclooxygenase enzymes. Proc Natl Acad Sci USA 90:7240–7244

    Article  PubMed  CAS  Google Scholar 

  • Salvemini D, Seibert K, Masferrer JL et al (1994) Endogenous nitric oxide enhances prostaglandin production in a model of renal inflammation. J Clin Invest 93:1940–1947

    Article  PubMed  CAS  Google Scholar 

  • Salvemini D, Manning PT, Zweifel BS et al (1995a) Dual inhibition of nitric oxide and prostaglandin production contributes to the antiinflammatory properties of nitric oxide synthase inhibitors. J Clin Invest 96:301–308

    Article  PubMed  CAS  Google Scholar 

  • Salvemini D, Settle SL, Masferrer JL et al (1995b) Regulation of prostaglandin production by nitric oxide; an in vivo analysis. Br J Pharmacol 114:1171–1178

    PubMed  CAS  Google Scholar 

  • Salvemini D, Wang ZQ, Bourdon DM et al (1996a) Evidence of peroxynitrite involvement in the carrageenan-induced rat paw edema. Eur J Pharmacol 303:217–220

    Article  PubMed  CAS  Google Scholar 

  • Salvemini D, Wang ZQ, Wyatt PS et al (1996b) Nitric oxide: a key mediator in the early and late phase of carrageenan-induced rat paw inflammation. Br J Pharmacol 118:829–838

    PubMed  CAS  Google Scholar 

  • Salvemini D, Jensen MP, Riley DP et al (1998a) Therapeutic manipulations of peroxynitrite. Drug News Perspect 11:204–214

    PubMed  CAS  Google Scholar 

  • Salvemini D, Wang ZQ, Stern MK et al (1998b) Peroxynitrite decomposition catalysts: therapeutics for peroxynitrite-mediated pathology. Proc Natl Acad Sci USA 95:2659–2663

    Article  PubMed  CAS  Google Scholar 

  • Salvemini D, Riley DP, Cuzzocrea S (2002) SOD mimetics are coming of age. Nat Rev Drug Discov 1:367–374

    Article  PubMed  CAS  Google Scholar 

  • Salvemini D, Doyle TM, Cuzzocrea S (2006) Superoxide, peroxynitrite and oxidative/nitrative stress in inflammation. Biochem Soc Trans 34:965–970

    Article  PubMed  CAS  Google Scholar 

  • Sandkuhler J (2009) Models and mechanisms of hyperalgesia and allodynia. Physiol Rev 89:707–758

    Article  PubMed  CAS  Google Scholar 

  • Schuman EM, Madison DV (1991) A requirement for the intercellular messenger nitric oxide in long-term potentiation. Science 254:1503–1506

    Article  PubMed  CAS  Google Scholar 

  • Schwartz ES, Lee I, Chung K et al (2008) Oxidative stress in the spinal cord is an important contributor in capsaicin-induced mechanical secondary hyperalgesia in mice. Pain 138:514–524

    Article  PubMed  CAS  Google Scholar 

  • Schwartz ES, Kim HY, Wang J et al (2009) Persistent pain is dependent on spinal mitochondrial antioxidant levels. J Neurosci 29:159–168

    Article  PubMed  CAS  Google Scholar 

  • Semos ML, Headley PM (1994) The role of nitric oxide in spinal nociceptive reflexes in rats with neurogenic and non-neurogenic peripheral inflammation. Neuropharmacology 33:1487–1497

    Article  PubMed  CAS  Google Scholar 

  • Simmons ML, Murphy S (1992) Induction of nitric oxide synthase in glial cells. J Neurochem 59:897–905

    Article  PubMed  CAS  Google Scholar 

  • Singh D, Richards D, Knowles RG et al (2007) Selective inducible nitric oxide synthase inhibition has no effect on allergen challenge in asthma. Am J Respir Crit Care Med 176:988–993

    Article  PubMed  CAS  Google Scholar 

  • Singh A, Zarember KA, Kuhns DB et al (2009) Impaired priming and activation of the neutrophil NADPH oxidase in patients with IRAK4 or NEMO deficiency. J Immunol 182:6410–6417

    Article  PubMed  CAS  Google Scholar 

  • Sommer D, Coleman S, Swanson SA et al (2002) Differential susceptibilities of serine/threonine phosphatases to oxidative and nitrosative stress. Arch Biochem Biophys 404:271–278

    Article  PubMed  CAS  Google Scholar 

  • Strack S, Choi S, Lovinger DM et al (1997) Translocation of autophosphorylated calcium/calmodulin-dependent protein kinase II to the postsynaptic density. J Biol Chem 272:13467–13470

    Article  PubMed  CAS  Google Scholar 

  • Sun XC, Chen WN, Li SQ et al (2009) Fluorocitrate, an inhibitor of glial metabolism, inhibits the up-regulation of NOS expression, activity and NO production in the spinal cord induced by formalin test in rats. Neurochem Res 34:351–359

    Article  PubMed  CAS  Google Scholar 

  • Szabo C, Ischiropoulos H, Radi R (2007) Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat Rev Drug Discov 6:662–680

    Article  PubMed  CAS  Google Scholar 

  • Tal M (1996) A novel antioxidant alleviates heat hyperalgesia in rats with an experimental painful peripheral neuropathy. NeuroReport 7:1382–1384

    Article  PubMed  CAS  Google Scholar 

  • Tanabe M, Nagatani Y, Saitoh K et al (2009) Pharmacological assessments of nitric oxide synthase isoforms and downstream diversity of NO signaling in the maintenance of thermal and mechanical hypersensitivity after peripheral nerve injury in mice. Neuropharmacology 56:702–708

    Article  PubMed  CAS  Google Scholar 

  • Tang Q, Svensson CI, Fitzsimmons B et al (2007) Inhibition of spinal constitutive NOS-2 by 1400 W attenuates tissue injury and inflammation-induced hyperalgesia and spinal p38 activation. Eur J Neurosci 25:2964–2972

    Article  PubMed  Google Scholar 

  • Tanga FY, Nutile-McMenemy N, DeLeo JA (2005) The CNS role of toll-like receptor 4 in innate neuroimmunity and painful neuropathy. Proc Natl Acad Sci USA 102:5856–5861

    Article  PubMed  CAS  Google Scholar 

  • Tao YX, Johns RA (2002) Activation and up-regulation of spinal cord nitric oxide receptor, soluble guanylate cyclase, after formalin injection into the rat hind paw. Neuroscience 112:439–446

    Article  PubMed  CAS  Google Scholar 

  • Tao F, Tao YX, Mao P et al (2003) Intact carrageenan-induced thermal hyperalgesia in mice lacking inducible nitric oxide synthase. Neuroscience 120:847–854

    Article  PubMed  CAS  Google Scholar 

  • Tao F, Tao YX, Zhao C et al (2004) Differential roles of neuronal and endothelial nitric oxide synthases during carrageenan-induced inflammatory hyperalgesia. Neuroscience 128:421–430

    Article  PubMed  CAS  Google Scholar 

  • Tassorelli C, Greco R, Wang D et al (2003) Nitroglycerin induces hyperalgesia in rats—a time-course study. Eur J Pharmacol 464:159–162

    Article  PubMed  CAS  Google Scholar 

  • Tassorelli C, Greco R, Wang D et al (2006) Prostaglandins, glutamate and nitric oxide synthase mediate nitroglycerin-induced hyperalgesia in the formalin test. Eur J Pharmacol 534:103–107

    Article  PubMed  CAS  Google Scholar 

  • Terayama R, Guan Y, Dubner R et al (2000) Activity-induced plasticity in brain stem pain modulatory circuitry after inflammation. Neuroreport 11:1915–1919

    Article  PubMed  CAS  Google Scholar 

  • Terayama R, Dubner R, Ren K (2002) The roles of NMDA receptor activation and nucleus reticularis gigantocellularis in the time-dependent changes in descending inhibition after inflammation. Pain 97:171–181

    Article  PubMed  CAS  Google Scholar 

  • Thomas TN, Priest DG, Zemp JW (1976) Distribution of superoxide dismutase in rat brain. J Neurochem 27:309–310

    Article  PubMed  CAS  Google Scholar 

  • Tingley WG, Ehlers MD, Kameyama K et al (1997) Characterization of protein kinase A and protein kinase C phosphorylation of the N-methyl-d-aspartate receptor NR1 subunit using phosphorylation site-specific antibodies. J Biol Chem 272:5157–5166

    Article  PubMed  CAS  Google Scholar 

  • Todd AJ, McGill MM, Shehab SAS (2000) Neurokinin 1 receptor expression by neurons in laminae I, III and IV of the rat spinal dorsal horn that project to the brainstem. Eur J Neurosci 12:689–700

    Article  PubMed  CAS  Google Scholar 

  • Trotti D, Rossi D, Gjesdal O et al (1996) Peroxynitrite inhibits glutamate transporter subtypes. J Biol Chem 271:5976–5979

    Article  PubMed  CAS  Google Scholar 

  • Tsatsanis C, Androulidaki A, Venihaki M et al (2006) Signalling networks regulating cyclooxygenase-2. Int J Biochem Cell Biol 38:1654–1661

    Article  PubMed  CAS  Google Scholar 

  • Urban MO, Coutinho SV, Gebhart GF (1999) Involvement of excitatory amino acid receptors and nitric oxide in the rostral ventromedial medulla in modulating secondary hyperalgesia produced by mustard oil. Pain 81:45–55

    Article  PubMed  CAS  Google Scholar 

  • Vallet P, Charnay Y, Steger K et al (2005) Neuronal expression of the NADPH oxidase NOX4, and its regulation in mouse experimental brain ischemia. Neuroscience 132:233–238

    Article  PubMed  CAS  Google Scholar 

  • Valtschanoff JG, Weinberg RJ, Rustioni A (1992) NADPH diaphorase in the spinal cord of rats. J Comp Neurol 321:209–222

    Article  PubMed  CAS  Google Scholar 

  • Van der Schueren BJ, Lunnon MW, Laurijssens BE et al (2009) Does the unfavorable pharmacokinetic and pharmacodynamic profile of the iNOS inhibitor GW273629 lead to inefficacy in acute migraine? J Clin Pharmacol 49:281–290

    Article  PubMed  CAS  Google Scholar 

  • Vanegas H (2004) To the descending pain-control system in rats, inflammation-induced primary and secondary hyperalgesia are two different things. Neurosci Lett 361:225–228

    Article  PubMed  CAS  Google Scholar 

  • Velazquez KT, Mohammad H, Sweitzer SM (2007) Protein kinase C in pain: involvement of multiple isoforms. Pharmacol Res 55:578–589

    Article  PubMed  CAS  Google Scholar 

  • Vincent SR, Kimura H (1992) Histochemical mapping of nitric oxide synthase in the rat brain. Neuroscience 46:755–784

    Article  PubMed  CAS  Google Scholar 

  • Wang Z-Q, Porreca F, Cuzzocrea S et al (2004) A newly identified role for superoxide in inflammatory pain. J Pharmacol Exp Ther 309:869–878

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Cochran V, Abdi S et al (2008) Phenyl N-t-butylnitrone, a reactive oxygen species scavenger, reduces zymosan-induced visceral pain in rats. Neurosci Lett 439:216–219

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Ma W, Chabot JG et al (2009) Cell-type specific activation of p38 and ERK mediates calcitonin gene-related peptide involvement in tolerance to morphine-induced analgesia. FASEB J 23:2576–2586

    Article  PubMed  CAS  Google Scholar 

  • Watanabe Y, Song T, Sugimoto K et al (2003) Post-synaptic density-95 promotes calcium/calmodulin-dependent protein kinase II-mediated Ser847 phosphorylation of neuronal nitric oxide synthase. Biochem J 372:465–471

    Article  PubMed  CAS  Google Scholar 

  • Watkins LR, Maier SF (2005) Immune regulation of central nervous system functions: from sickness responses to pathological pain. J Intern Med 257:139–155

    Article  PubMed  CAS  Google Scholar 

  • Watkins LR, Hutchinson MR, Rice KC et al (2009) The “toll” of opioid-induced glial activation: improving the clinical efficacy of opioids by targeting glia. Trends Pharmacol Sci 30:581–591

    Article  PubMed  CAS  Google Scholar 

  • Wei F, Guo W, Zou S et al (2008) Supraspinal glial-neuronal interactions contribute to descending pain facilitation. J Neurosci 28:10482–10495

    Article  PubMed  CAS  Google Scholar 

  • Woolf CJ (1983) Evidence for a central component of post-injury pain hypersensitivity. Nature 306:686–688

    Article  PubMed  CAS  Google Scholar 

  • Woolf CJ, Salter MW (2006) Plasticity and pain: role of the dorsal horn. In: McMahon SB, Koltzenburg M (eds) Wall and Melzack’s textbook of pain, 5th edn. Churchill Livingstone, Philadelphia, pp 91–106

    Google Scholar 

  • Woolf CJ, Thompson SW (1991) The induction and maintenance of central sensitization is dependent on N-methyl-d-aspartic acid receptor activation; implications for the treatment of post-injury pain hypersensitivity states. Pain 44:293–299

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Su G, Ma L et al (2005) Protein kinases mediate increment of the phosphorylation of cyclic AMP-responsive element binding protein in spinal cord of rats following capsaicin injection. Mol Pain 1:26

    Article  PubMed  CAS  Google Scholar 

  • Yamakura F, Taka H, Fujimura T et al (1998) Inactivation of human manganese-superoxide dismutase by peroxynitrite is caused by exclusive nitration of tyrosine 34 to 3-nitrotyrosine. J Biol Chem 273:14085–14089

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto T, Shimoyama N (1995) Role of nitric oxide in the development of thermal hyperesthesia induced by sciatic nerve constriction injury in the rat. Anesthesiology 82:1266–1273

    Article  PubMed  CAS  Google Scholar 

  • Yamaoka S, Courtois G, Bessia C et al (1998) Complementation cloning of NEMO, a component of the IkappaB kinase complex essential for NF-kappaB activation. Cell 93:1231–1240

    Article  PubMed  CAS  Google Scholar 

  • Yan X-B, Song B, Zhang G-Y (2004) Postsynaptic density protein 95 mediates Ca2+/calmodulin-dependent protein kinase II-activated serine phosphorylation of neuronal nitric oxide synthase during brain ischemia in rat hippocampus. Neurosci Lett 355:197–200

    Article  PubMed  CAS  Google Scholar 

  • Yang H-W, Hu X-D, Zhang H-M et al (2004) Roles of CaMKII, PKA, and PKC in the induction and maintenance of LTP of C-fiber-evoked field potentials in rat spinal dorsal horn. J Neurophysiol 91:1122–1133

    Article  PubMed  CAS  Google Scholar 

  • Yang T, Zhang A, Pasumarthy A et al (2006) Nitric oxide stimulates COX-2 expression in cultured collecting duct cells through MAP kinases and superoxide but not cGMP. Am J Physiol Renal Physiol 291:F891–F895

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Yang HB, Xie QJ et al (2009) Peripheral inflammation increased the synaptic expression of NMDA receptors in spinal dorsal horn. Pain 144:162–169

    Article  PubMed  CAS  Google Scholar 

  • Yashpal K, Pitcher GM, Parent A et al (1995) Noxious thermal and chemical stimulation induce increases in 3H-phorbol 12, 13-dibutyrate binding in spinal cord dorsal horn as well as persistent pain and hyperalgesia, which is reduced by inhibition of protein kinase C. J Neurosci 15:3263–3272

    PubMed  CAS  Google Scholar 

  • Yeo JF, Ling SF, Tang N et al (2008) Antinociceptive effect of CNS peroxynitrite scavenger in a mouse model of orofacial pain. Exp Brain Res 184:435–438

    Article  PubMed  CAS  Google Scholar 

  • Zanelli SA, Ashraf QM, Delivoria-Papadopoulos M et al (2000) Peroxynitrite-induced modification of the N-methyl-d-aspartate receptor in the cerebral cortex of the guinea pig fetus at term. Neurosci Lett 296:5–8

    Article  PubMed  CAS  Google Scholar 

  • Zanelli SA, Ashraf QM, Mishra OP (2002) Nitration is a mechanism of regulation of the NMDA receptor function during hypoxia. Neuroscience 112:869–877

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Bhargava K, Keszler A et al (2003) Transmembrane nitration of hydrophobic tyrosyl peptides. Localization, characterization, mechanism of nitration, and biological implications. J Biol Chem 278:8969–8978

    Article  PubMed  CAS  Google Scholar 

  • Zhang XC, Zhang YQ, Zhao ZQ (2005) Involvement of nitric oxide in long-term potentiation of spinal nociceptive responses in rats. NeuroReport 16:1197–1201

    Article  PubMed  CAS  Google Scholar 

  • Zheng X, Zhang L, Wang AP et al (1997) Ca2+ influx amplifies protein kinase C potentiation of recombinant NMDA receptors. J Neurosci 17:8676–8686

    PubMed  CAS  Google Scholar 

  • Zou X, Lin Q, Willis WD (2002) Role of protein kinase A in phosphorylation of NMDA receptor 1 subunits in dorsal horn and spinothalamic tract neurons after intradermal injection of capsaicin in rats. Neuroscience 115:775–786

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by R01 DA024074 and R21 DA023056 (DS). We would like to thank Drs Bill Neumann (Southern Illinois University Edwardsville) and Ines Batinic-Haberle (Duke University) for their insightful and helpful discussion.

Conflict of interest statement

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Salvemini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Little, J.W., Doyle, T. & Salvemini, D. Reactive nitroxidative species and nociceptive processing: determining the roles for nitric oxide, superoxide, and peroxynitrite in pain. Amino Acids 42, 75–94 (2012). https://doi.org/10.1007/s00726-010-0633-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0633-0

Keywords

Navigation