Skip to main content

Advertisement

Log in

C-terminal amidation of PMAP-23: translocation to the inner membrane of Gram-negative bacteria

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

PMAP-23 is a member of the cathelicidin family derived from pig myeloid cells and has potent antimicrobial activity. Amidation of the carboxyl terminus (C-terminus) of an antimicrobial peptide generally enhances its structural stability and antimicrobial activity or decreases its cytotoxicity. The aim of the present study was to investigate the effect of amidation on the mode of action in PMAP-23. Irrespective of amidation, PMAP-23 adopts a helix–hinge–helix structure in a membrane-mimetic environment. The antibacterial activities of PMAP-23C, which had a free C-terminus, and PMAP-23N, which had an amidated C-terminus, were similar against Gram-negative bacteria, reflecting a similar ability to neutralize lipopolysaccharide. However, PMAP-23N assumed a perpendicular orientation across the outer to the inner leaflet of the bacterial inner membrane, while PMAP-23C was orientated parallel to the lipid bilayer, as determined by following the blue shift in tryptophan fluorescence, as well as calcein release from liposomes and SYTOX Green uptake assays. These results suggest that N-terminal amidation of PMAP-23 provides structural stability and increases the peptide’s cationic charge, facilitating translocation into the bacterial inner membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

LPS:

Lipopolysaccharide

PE:

L-α-phosphatidylethanolamine

PG:

L-α-phosphatidyl-dl-glycerol

CL:

Cardiolipin

DiSC3-5:

3,3′-Diethylthio-dicarbocyanine iodide

CFU:

Colony-forming unit

AMP:

Antimicrobial peptide

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a tetrazole

TFE:

Trifluoroethanol

DMSO:

Dimethyl sulfoxide

LB:

Luria–Bertani

References

  • Agerberth B, Lee J-Y, Bergman T, Carlquist M, Boman HG, Mutt V, Jörnvall H (1991) Amino acid sequence of PR-39. Eur J Biochem 202:849–854

    Article  CAS  PubMed  Google Scholar 

  • Ali MF, Soto AM, Knoop FC, Conlon JM (2001) Antimicrobial peptides isolated from skin secretions of the diploid frog, Xenopus tropicalis (Pipidae). Biochim Biophys Acta 1550:81–89

    Article  CAS  PubMed  Google Scholar 

  • Andreu D, Rivas L (1998) Animal antimicrobial peptides: an overview. Biopolymers 47:415–433

    Article  CAS  PubMed  Google Scholar 

  • Andreu D, Merrifield RB, Steiner H, Boman HG (1983) Solid-phase synthesis of cecropin A and related peptides. Proc Natl Acad Sci USA 80:6475–6479

    Article  CAS  PubMed  Google Scholar 

  • Apponyi MA, Pukala TL, Brinkworth CS, Maselli VM, Bowie JH, Tyler MJ, Booker GW, Wallace JC, Carver JA, Separovic F, Doyle J, Llewellyn LE (2004) Host-defence peptides of Australian anurans: structure, mechanism of action and evolutionary significance. Peptides 25:1035–1054

    Article  CAS  PubMed  Google Scholar 

  • Bagella L, Scocchi M, Zanetti M (1995) cDNA sequences of three sheep myeloid cathelicidins. FEBS Lett 376:225–228

    Article  CAS  PubMed  Google Scholar 

  • Bergsson G, Agerberth B, Jörnvall H, Gudmundsson GH (2005) Isolation and identification of antimicrobial components from the epidermal mucus of Atlantic cod (Gadus morhua). FEBS J 272:4960–4969

    Article  CAS  PubMed  Google Scholar 

  • Bolen EJ, Holloway PW (1990) Quenching of tryptophan fluorescence by brominated phospholipid. Biochemistry 29:9638–9643

    Article  CAS  PubMed  Google Scholar 

  • Borregaard N, Sørensen OE, Theilgaard-Mönch K (2007) Neutrophil granules: a library of innate immunity proteins. Trends Immunol 28:340–345

    Article  CAS  PubMed  Google Scholar 

  • Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250

    Article  CAS  PubMed  Google Scholar 

  • Bulet P, Hegy G, Van Dorsselaer A, Hoffmann JA, Hetru C (1995) Insect immunity. The inducible antibacterial peptide diptericin carries two O-glycans necessary for biological activity. Biochemistry 34:7394–7400

    Article  CAS  PubMed  Google Scholar 

  • Cociancich S, Dupont A, Hegy G, Lanot R, Holder F, Hetru C, Hoffmann JA, Bulet P (1994) Novel inducible antibacterial peptides from a hemipteran insect, the sap-sucking bug Pyrrhocoris apterus. Biochem J 300:567–575

    CAS  PubMed  Google Scholar 

  • De Kroon AI, Soekarjo MW, De Gier J, De Kruijff B (1990) The role of charge and hydrophobicity in peptide–lipid interaction: a comparative study based on tryptophan fluorescence measurements combined with the use of aqueous and hydrophobic quenchers. Biochemistry 29:8229–8240

    Article  PubMed  Google Scholar 

  • Del Sal G, Storici P, Schneider C, Romeo D, Zanetti M (1992) cDNA cloning of the neutrophil bactericidal peptide indolicidin. Biochem Biophys Res Commun 187:467–472

    Article  CAS  PubMed  Google Scholar 

  • Destoumieux D, Bulet P, Loew D, Van Dorsselaer A, Rodrı′guez J, Bachère E (1997) Penaeidins, a new family of antimicrobial peptides isolated from the shrimp Penaeus vannamei (Decapoda). J Biol Chem 272:28398–28406

    Article  CAS  PubMed  Google Scholar 

  • Dos Santos Cabrera MP, Arcisio-Miranda M, Broggio Costa ST, Konno K, Ruggiero JR, Procopio J, Ruggiero Neto J (2008a) Study of the mechanism of action of anoplin, a helical antimicrobial decapeptide with ion channel-like activity, and the role of the amidated C-terminus. J Pept Sci 14:661–669

    Article  PubMed  CAS  Google Scholar 

  • Dos Santos Cabrera MP, Costa ST, de Souza BM, Palma MS, Ruggiero JR, Ruggiero Neto J (2008b) Selectivity in the mechanism of action of antimicrobial mastoparan peptide Polybia-MP1. Eur Biophys J 37:879–891

    Article  CAS  PubMed  Google Scholar 

  • Driscoll J, Zuo Y, Xu T, Choi JR, Troxler RF, Oppenheim FG (1995) Functional comparison of native and recombinant human salivary histatin 1. J Dent Res 74:1837–1844

    Article  CAS  PubMed  Google Scholar 

  • Epand RF, Martinou JC, Fornallaz-Mulhauser M, Hughes DW, Epand RM (2002) The apoptotic protein tBid promotes leakage by altering membrane curvature. J Biol Chem 277:32632–32639

    Article  CAS  PubMed  Google Scholar 

  • Epand RF, Schmitt MA, Gellman SH, Epand RM (2006) Role of membrane lipids in the mechanism of bacterial species selective toxicity by two alpha/beta-antimicrobial peptides. Biochim Biophys Acta 1758:1343–1350

    Article  CAS  PubMed  Google Scholar 

  • Epand RM, Rotem S, Mor A, Berno B, Epand RF (2008) Bacterial membranes as predictors of antimicrobial potency. J Am Chem Soc 130:14346–14352

    Article  CAS  PubMed  Google Scholar 

  • Fujii G, Selsted ME, Eisenberg D (1993) Defensins promote fusion and lysis of negatively charged membranes. Protein Sci 2:1301–1312

    Article  CAS  PubMed  Google Scholar 

  • Gallo RL, Kim KJ, Bernfield M, Kozak CA, Zanetti M, Merluzzi L, Gennaro R (1997) Identification of CRAMP, a cathelicin-related antimicrobial peptide expressed in the embryonic and adult mouse. J Biol Chem 272:13088–13093

    Article  CAS  PubMed  Google Scholar 

  • Ganz T, Lehrer RI (1999) Antibiotic peptides from higher eukaryotes: biology and applications. Mol Med Today 5:292–297

    Article  CAS  PubMed  Google Scholar 

  • Gennaro R, Skerlavaj B, Romeo D (1989) Purification, composition, and activity of two bactenecins, antibacterial peptides of bovine neutrophils. Infect Immun 57:3142–3146

    CAS  PubMed  Google Scholar 

  • Ghosh JK, Peisajovich SG, Ovadia M, Shai Y (1998) Serum-induced leakage of liposome contents. J Biol Chem 273:27182–27190

    Article  CAS  PubMed  Google Scholar 

  • Giacometti A, Cirioni O, Ghiselli R, Mocchegiani F, Del Prete MS, Viticchi C, Kamysz W, Lempicka E, Saba V, Scalise G (2002) Potential therapeutic role of cationic peptides in three experimental models of septic shock. Antimicrob Agents Chemother 46:2132–2136

    Article  CAS  PubMed  Google Scholar 

  • Gough M, Hancock RE, Kelly NM (1996) Antiendotoxin activity of cationic peptide antimicrobial agents. Infec Immu 64:4922–4927

    CAS  Google Scholar 

  • Goumon Y, Strub JM, Moniatte M, Nullans G, Poteur L, Hubert P, Van Dorsselaer A, Aunis D, Metz-Boutigue MH (1996) The C-terminal bisphosphorylated proenkephalin-A-(209–237)-peptide from adrenal medullary chromaffin granules possesses antibacterial activity. Eur J Biochem 235:516–525

    Article  CAS  PubMed  Google Scholar 

  • Hale JD, Hancock RE (2007) Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev Anti Infect Ther 5:951–959

    Article  CAS  PubMed  Google Scholar 

  • Hancock RE, Scott MG (2000) The role of antimicrobial peptides in animal defenses. Proc Natl Acad Sci USA 97:8856–8861

    Article  CAS  PubMed  Google Scholar 

  • Jenssen H, Hamill O, Hancock RE (2006) Peptide antimicrobial agents. Clin Microbiol Rev 19:491–511

    Article  CAS  PubMed  Google Scholar 

  • Katayama H, Ohira T, Aida K, Nagasawa H (2002) Significance of a carboxyl-terminal amide moiety in the folding and biological activity of crustacean hyperglycemic hormone. Peptides 23:1537–1546

    Article  CAS  PubMed  Google Scholar 

  • Kim JY, Lee SY, Park SC, Shin SY, Choi SJ, Park Y, Hahm KS (2007) Purification and antimicrobial activity studies of the N-terminal fragment of ubiquitin from human amniotic fluid. Biochim Biophys Acta 1774:1221–1226

    CAS  PubMed  Google Scholar 

  • Kokryakov VN, Harwig SSL, Panyutich EA, Shevchenko AA, Aleshina GM, Shamova OV, Korneva HA, Lehrer RI (1993) Protegrins: leukocyte antimicrobial peptides that combine features of corticostatin defensins and tachyplesins. FEBS Lett 327:231–236

    Article  CAS  PubMed  Google Scholar 

  • Konno K, Hisada M, Naoki H, Itagaki Y, Kawai N, Miwa A, Yasuhara T, Morimoto Y, Nakata Y (2000) Structure and biological activities of eumenine mastoparan-AF (EMP-AF), a new mast cell degranulating peptide in the venom of the solitary wasp (Anterhynchium flavomarginatum micado). Toxicon 38:1505–1515

    Article  CAS  PubMed  Google Scholar 

  • Konno K, Hisada M, Naoki H, Itagaki Y, Fontana R, Rangel M, Oliveira JS, Cabrera MP, Neto JR, Hide I, Nakata Y, Yasuhara T, Nakajima T (2006) Eumenitin, a novel antimicrobial peptide from the venom of the solitary eumenine wasp Eumenes rubronotatus. Peptides 27:2624–2631

    Article  CAS  PubMed  Google Scholar 

  • Larrick JW, Hirata M, Balint RF, Lee J, Zhong J, Wright SC (1995) Human CAP 18: a novel antimicrobial lipopolysaccharide-binding protein. Infect Immun 63:1291–1297

    CAS  PubMed  Google Scholar 

  • Lee JY, Yang ST, Lee SK, Jung HH, Shin SY, Hanm KS, Kim JI (2008) Salt-resistant homodimeric bactenecin, a cathelicidin-derived antimicrobial peptide. FEBS J 275:3911–3920

    Article  CAS  PubMed  Google Scholar 

  • Lehrer R, Ganz IT (1993) Antimicrobial peptides in mammalian and insect host defense. Curr Opin Immunol 11:23–27

    Article  Google Scholar 

  • Lewis RN, McElhaney RN (2009) The physicochemical properties of cardiolipin bilayers and cardiolipin-containing lipid membranes. Biochim Biophys Acta 1788:2069–2079

    Article  CAS  PubMed  Google Scholar 

  • Li P, Wohland T, Ho B, Ding JL (2004) Perturbation of lipopolysaccharide (LPS) micelles by Sushi 3 (S3) antimicrobial peptide. J Biol Chem 279:50150–50156

    Article  CAS  PubMed  Google Scholar 

  • Mackintosh JA, Veal DA, Beattie AJ, Gooley AA (1998) Isolation from an ant Myrmecia gulosa of two inducible O-glycosylated proline-rich antibacterial peptides. J Biol Chem 273:6139–6143

    Article  CAS  PubMed  Google Scholar 

  • Maeng C, Oh MS, Park IH, Hong HJ (2001) Purification and structural analysis of the hepatitis B virus preS1 expressed from Escherichia coli. Biochem Biophys Res Commun 282:787–792

    Article  CAS  PubMed  Google Scholar 

  • Mangoni ME, Aumelas A, Charnet P, Roumestand C, Chiche L, Despaux E, Grassy G, Calas B, Chavanieu A (1996) Change in membrane permeability induced by protegrin 1: implication of disulphide bridges for pore formation. FEBS Lett 383:93–98

    Article  CAS  PubMed  Google Scholar 

  • Mangoni ML, Papo N, Barra D, Simmaco M, Bozzi A, Di Giulio A, Rinaldi AC (2004) Effects of the antimicrobial peptide temporin L on cell morphology, membrane permeability and viability of Escherichia coli. Biochem J 380:859–865

    Article  CAS  PubMed  Google Scholar 

  • Marynka K, Rotem S, Portnaya I, Cogan U, Mor A (2007) In vitro discriminative antipsedomonal properties resulting from acyl substitution of N-terminal sequence of dermaseptin S4 derivatives. Chem Biol 14:75–85

    Article  CAS  PubMed  Google Scholar 

  • Mcintosh TJ (1980) Differences in hydrocarbon chain tilt between hydrated phosphatidylethanolamine and phosphatidylcholine bilayers. A molecular packing model. Biophys J 29:237–245

    Article  CAS  PubMed  Google Scholar 

  • Mignona G, Simmaco M, Kreil G, Barra D (1993) Antibacterial and haemolytic containing d-alloisoleucine from the skin of Bombina variegata. EMBO J 12:4829–4832

    Google Scholar 

  • Mor A, Nguyen VH, Delfour A, Migliore-Samour D, Nicolas P (1991) Isolation, amino acid sequence and synthesis of dermaseptin, a novel antimicrobial peptide of amphibian skin. Biochemistry 30:8824–8830

    Article  CAS  PubMed  Google Scholar 

  • Mor A, Hani K, Nicolas P (1994) The vertebrate peptide antibiotics dermaseptins have overlapping structural features but target specific microorganisms. J Biol Chem 269:31635–31641

    CAS  PubMed  Google Scholar 

  • Morikawa N, Hagiwara K, Nakajima T (1992) Brevinin-1 and -2, unique antimicrobial peptides from the skin of the frog, Ranabrevipoda porsa. Biochem Biophys Res Commun 189:184–190

    Article  CAS  PubMed  Google Scholar 

  • Nguyen LT, Schibli DJ, Vogel HJ (2005) Structural studies and model membrane interactions of two peptides derived from bovine lactoferricin. J Pept Sci 11:379–389

    Article  CAS  PubMed  Google Scholar 

  • Orioni B, Bocchinfuso G, Kim JY, Palleschi A, Grande G, Bobone S, Park Y, Kim JI, Hahm KS, Stella L (2009) Membrane perturbation by the antimicrobial peptide PMAP-23: a fluorescence and molecular dynamics study. Biochim Biophys Acta 1788:1523–1533

    Article  CAS  PubMed  Google Scholar 

  • Pag U, Oedenkoven M, Sass V, Shai Y, Shamova O, Antcheva N, Tossi A, Sahl HG (2008) Analysis of in vitro activities and modes of action of synthetic antimicrobial peptides derived from an a-helical ‘sequence template’. J Antimicrob Chemoth 61:341–352

    Article  CAS  Google Scholar 

  • Papo N, Shai Y (2005) A molecular mechanism for lipospolysaccharide protection of Gram-negative bacteria from antimicrobial peptides. J Biol Chem 280:10378–10387

    Article  CAS  PubMed  Google Scholar 

  • Papo N, Oren Z, Pag U, Sahi HG, Shai Y (2002) The consequence of sequence alteration of an amphipathic α-helical antimicrobial peptide and its diastereomers. J Biol Chem 37:33913–33921

    Article  Google Scholar 

  • Park CB, Lee JH, Park IY, Kim MS, Kim SC (1997) A novel antimicrobial peptide from the loach, Misgurnus anguillicaudatus. FEBS Lett 411:173–178

    Article  CAS  PubMed  Google Scholar 

  • Park K, Oh D, Shin SY, Hahm KS, Kim Y (2002) Structural studies of porcine myeloid antibacterial peptide PMAP-23 and its analogues in DPC micelles by NMR spectroscopy. Biochem Biophys Res Commun 290:204–212

    Article  CAS  PubMed  Google Scholar 

  • Park SC, Kim MH, Hossain MA, Shin SY, Kim Y, Stella L, Wade JD, Park Y, Hahm KS (2008a) Amphipatic α-helical peptide, HP (2–20), and its analogues derived from Helicobacter pylori: pore formation mechanism in various lipid compositions. Biochim Biophys Acta 1778:229–241

    Article  CAS  PubMed  Google Scholar 

  • Park SC, Yoon NC, Kim JY, Park HY, Chae BJ, Shin SY, Cheong H, Park Y, Hahm KS (2008b) Isolation and characterization of an extracellular antimicrobial protein from Aspergillus oryzae. J Agric Food Chem 56:9647–9652

    Article  CAS  PubMed  Google Scholar 

  • Ramanathan B, Davis EG, Ross GR, Blecha F (2002) Cathelicidins: microbicidal activity, mechanisms of action, and roles in innate immunity. Microbes Infect 4:361–372

    Article  CAS  PubMed  Google Scholar 

  • Ried C, Wahl C, Miethke T, Wellnhofer G, Landgraf C, Schneider-Mergener J, Hoess A (1996) High affinity endotoxin-binding and neutralizing peptides based on the crystal structure of recombinant Limulus antilipopolysaccharide factor. J Biol Chem 271:28120–28127

    Article  CAS  PubMed  Google Scholar 

  • Rosenfeld Y, Barra D, Simmaco M, Shai Y, Mangoni ML (2006) A synergism between temporins toward Gram-negative bacteria overcomes resistance imposed by the lipopolysaccharide protective layer. J Biol Chem 281:28565–28574

    Article  CAS  PubMed  Google Scholar 

  • Roth BL, Poot M, Yue ST, Millard PJ (1997) Bacterial viability and antibiotic susceptibility testing with SYTOX Green nucleic acid stain. App Environ Microbiol 63:2421–2431

    CAS  Google Scholar 

  • Sandvik AK, Dockray GJ (1999) Biological activity of carboxy-terminal gastrin analogs. Eur J Pharmacol 364:199–203

    Article  CAS  PubMed  Google Scholar 

  • Scott MG, Yan H, Hancock RE (1999) Biological properties of structurally related α helical cationic antimicrobial peptides. Infec Immun 67:2005–2009

    CAS  Google Scholar 

  • Sforça ML, SJr Oyama, Canduri F, Lorenzi CCB, Pertinhex TA, Konno K, Souza BM, Palma MS, Ruggiero NJ, Azevedo WF Jr, Spisni A (2004) How C-terminal carboxyamidation alters the biological activity of peptides from the venom of the eumenine solitary wasp. Biochemistry 43:5608–5617

    Article  PubMed  CAS  Google Scholar 

  • Shalev DE, Mor A, Kustanovich I (2002) Structural consequences of carboxyamidation of dermaseptin S3. Biochemistry 41:7312–7317

    Article  CAS  PubMed  Google Scholar 

  • Shunyi Z, Liang W, Kenshi Y, Richard LG (2008) Activation of cathepsin l by the cathelin-like domain of protegrin-3. Mol Immunol 45:2531–2536

    Article  CAS  Google Scholar 

  • Som A, Tew GN (2006) Influence of lipid composition on membrane activity of antimicrobial phenylene ethynylene oligomers. J Phys Chem 112:3495–3502

    Google Scholar 

  • Storici P, Zanetti M (1993) A cDNA derived from pig bone marrow cells contains a sequence identical to the intestinal antimicrobial peptide PR-39. Biochem Biophys Res Commun 196:1058–1065

    Article  CAS  PubMed  Google Scholar 

  • Tossi A, Scocchi M, Zanetti M, Storici P, Gennaro R (1995) PAMP-37, a novel antibacterial peptide from pig myeloid cells, cDNA cloning, chemical synthesis and activity. Eur J Biochem 228:941–946

    Article  CAS  PubMed  Google Scholar 

  • Tossi A, Sandri L, Giangaspero A (2000) Amphipathic, α-helical antimicrobial peptides. Biopolymers 55:4–30

    Article  CAS  PubMed  Google Scholar 

  • Wong JH, Xia L, Ng TB (2007) A review of defensins of diverse origins. Curr Protein Pept Sci 8:446–459

    Article  CAS  PubMed  Google Scholar 

  • Xiong YQ, Mukhopadhyay K, Yeaman MR, Adler-Moore J, Bayer AS (2005) Functional interrelationships between cell membrane and cell wall in antimicrobial peptide-mediated killing of Staphylococcus aureus. Antimicrob Agents Chemother 49:3114–3121

    Article  CAS  PubMed  Google Scholar 

  • Yanagida N, Uozumi T, Beppu T (1986) Specific excretion of Serratia marcescens protease through the outer membrane of Escherichia coli. J Bacteriol 166:937–994

    CAS  PubMed  Google Scholar 

  • Yang ST, Jeon JH, Kim Y, Shin SY, Hahm KS, Kim JI (2006) Possible role of a PXXP central hinge in the antibacterial activity and membrane interaction of PMAP-23, a member of cathelicidin family. Biochemistry 25:1775–1784

    Article  CAS  Google Scholar 

  • Yang L, Gordon VD, Trinkle DR, Schmidt NW, Davis MA, DeVries C, Som A, Cronan JE Jr, Tew GN, Wong GC (2008) Mechanism of a prototypical synthetic membrane-active antimicrobial: efficient hole-punching via interaction with negative intrinsic curvature lipids. Proc Natl Acad Sci USA 105:20595–20600

    Article  CAS  PubMed  Google Scholar 

  • Zanetti M, Storici P, Tossi A, Scocchi M, Gennaro R (1994) Molecular cloning and chemical synthesis of a novel antimicrobial peptide derived from pig myeloid cells. J Biol Chem 269:7855–7858

    CAS  PubMed  Google Scholar 

  • Zanetti M, Gennaro R, Romeo D (1995) Cathelicidins: a novel family with a common proregion and a variable C-terminal antimicrobial domain. FEBS Lett 374:1–5

    Article  CAS  PubMed  Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicelluar organisms. Nature 415:389–395

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Kinnunen PKJ (2002) Binding of the antimicrobial peptide temporin L to liposomes assessed by Trp fluorescence. J Biol Chem 277:25170–25177

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Liu L, Lehrer RI (1994) Identification of a new member of the protegrin family by cDNA cloning. FEBS Lett 346:285–288

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Pioneer Research Program for Converging Technology of the Ministry of Education, Science and Technology, Republic of Korea (Grant No. 20100002201) and research funds from Chosun University in 2008.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kyung-Soo Hahm or Yoonkyung Park.

Additional information

J.-Y. Kim and S.-C. Park contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, JY., Park, SC., Yoon, MY. et al. C-terminal amidation of PMAP-23: translocation to the inner membrane of Gram-negative bacteria. Amino Acids 40, 183–195 (2011). https://doi.org/10.1007/s00726-010-0632-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0632-1

Keywords

Navigation