Skip to main content
Log in

Modulation of blackspot seabream (Pagellus bogaraveo) intermediary metabolic pathways by dispensable amino acids

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The objective of the present work is to investigate the main metabolic pathways by which dispensable amino acids (DAA) are diverted towards lipid formation in blackspot seabream. For that purpose, a control diet was formulated to contain 45% of crude protein (7.2 g N/100 g dry matter) mainly supplied by fish meal (45P). In two other diets, 22.2% of the dietary nitrogen (1.6 g N/100 g dry matter) was replaced by an equivalent amount of nitrogen provided by two different mixtures of DAA: alanine and serine (diet AS) or aspartic and glutamic acid (diet AG). A fourth diet (diet 35P) only containing 35% of crude protein (5.6 g N/100 g dry matter) was included in order to analyze the possible additive effects of DAA. Compared to fish fed diet 35P, blackspot seabream appear to make a more efficient use of the nitrogen provided by alanine and serine than that provided by aspartic and glutamic acids in terms of growth. Contrary to fish fed AG, fish fed AS attained similar specific FAS activities as 45P fed fish, suggesting a further role of alanine and serine on this lipogenic pathway. Dietary nitrogen reduction (45P vs. 35P) or its replacement by a mixture of aspartic and glutamic acids (diet AG) were shown to up-regulate phosphoenolpyruvate carboxykinase (PEPCK) but without, however, any effect on plasma glucose levels. Dietary nitrogen level and nature seems to exert a complex regulation on energetic pathways through the gluconeogenesis/tricarboxylic acids cycle interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AA:

Amino acids

CHOL:

Cholesterol

DAA:

Dispensable amino acids

IAA:

Indispensable amino acids

FAA:

Free amino acids

FA:

Fatty acid

FAs:

Fatty acids

HSI:

Hepatosomatic index

MUFA:

Monounsaturated fatty acids

PUFA:

Polyunsaturated fatty acids

TAG:

Triacylglycerol

VSI:

Viscerosomatic index

References

  • Abboudi T, Mambrini M, Larondelle Y, Rollin X (2009) The effect of dispensable amino acids on nitrogen and amino acid losses in Atlantic salmon (Salmo salar) fry fed a protein-free diet. Aquaculture 289:327–333

    Article  CAS  Google Scholar 

  • Akiyama T, Oohara I, Yamamoto T (1997) Comparison of essential amino acid requirements with A/E ratio among fish species. Fish Sci 63:963–970

    CAS  Google Scholar 

  • Allen NK, Baker DH (1974) Quantitative evaluation of non-specific nitrogen sources for growing chick. Poult Sci 53:258–264

    CAS  PubMed  Google Scholar 

  • Alvarez MJ, Lopez-Bote CJ, Diez A, Corraze G, Arzel J, Dias J, Kaushik SJ, Bautista JM (1999) The partial substitution of digestible protein with gelatinized starch as an energy source reduces susceptibility to lipid oxidation in rainbow trout (Oncorhynchus mykiss) and sea bass (Dicentrarchus labrax) muscle. J Anim Sci 77:3322–3329

    CAS  PubMed  Google Scholar 

  • Ambardekar AA, Reigh RC, Williams MB (2009) Absorption of amino acids from intact dietary proteins and purified amino acid supplements follows different time-courses in channel catfish (Ictalurus punctatus). Aquaculture 291:179–187

    Article  CAS  Google Scholar 

  • Bergmeyer HU (1974) Methods of enzymatic analysis, vol 4. Academic Press, London, pp 1704–1708

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Burgess SC, Hausler N, Merritt MJ, Jeffrey FMH, Storey C, Milde A, Koshy S, Lindner J, Magnuson MA, Malloy CR, Sherry AD (2004) Impaired tricarboxylic acid cycle activity in mouse livers lacking cytosolic phosphoenolpyruvate carboxykinase. J Biol Chem 279:48941–48949

    Article  CAS  PubMed  Google Scholar 

  • Burgess SC, He TT, Yan Z, Lindner J, Sherry AD, Malloy CR, Browning JD, Magnuson MA (2007) Cytosolic phosphoenolpyruvate carboxykinase does not solely control the rate of hepatic gluconeogenesis in the intact mouse liver. Cell Metab 5:313–320

    Article  CAS  PubMed  Google Scholar 

  • Chakravarty K, Cassuto H, Reshef L, Hanson RW, Cox MM (2005) Factors that control the tissue-specific transcription of the gene for phosphoenolpyruvate carboxykinase-C. Crit Rev Biochem Mol Biol 40:129–154

    Article  CAS  PubMed  Google Scholar 

  • Cho CY, Kaushik SJ (1985) Effects of protein intake on metabolizable and net energy values of fish diets. In: Cowey CB, Mackie AM, Bell JG (eds) Nutrition and feeding in fish. Academic Press, London, pp 95–117

    Google Scholar 

  • Corraze G (2001) Lipid nutrition. In: Guillaume J, Kaushik S, Bergot P, Metailler R (eds) Nutrition and feeding of fish and crustaceans. Springer Prarois, Chichester, pp 111–130

    Google Scholar 

  • Cowey CB, Sargent JR (1979) Nutrition. In: Hoar W, Stewart DJ, Randall J, Brett R (eds) Fish physiology. Academic Press, New York, pp 1–69

    Google Scholar 

  • Cowey CB, Walton MJ (1988) Studies on the uptake of (C-14) amino-acids derived from both dietary (C-14) protein and dietary (C-14) amino-acids by rainbow trout, Salmo gairdneri Richardson. J Fish Biol 33:293–305

    Article  CAS  Google Scholar 

  • Cowey CB, Walton MJ (1989) Intermediary metabolism. In: Halver JE (ed) Fish nutrition. Academic Press, New York, pp 259–329

    Google Scholar 

  • Dias J (1999) Lipid deposition in rainbow trout (Oncorhynchus mykiss) and European seabass (Dicentrarchus labrax L.): nutritional regulation of hepatic lipogenesis. Dr Thesis, University of Porto (Portugal) and University of Bordeaux I (France), p 190

  • Dias J, Alvarez MJ, Diez A, Arzel J, Corraze G, Bautista JM, Kaushik SJ (1998) Regulation of hepatic lipogenesis by dietary protein/energy in juvenile European seabass (Dicentrarchus labrax). Aquaculture 161:169–186

    Article  CAS  Google Scholar 

  • Dias J, Arzel J, Aguirre P, Corraze G, Kaushik S (2003) Growth and hepatic acetyl coenzyme-A carboxylase activity are affected by dietary protein level in European seabass (Dicentrarchus labrax). Comp Biochem Physiol 135B:183–196

    CAS  Google Scholar 

  • Dias J, Alvarez MJ, Arzel J, Corraze G, Diez A, Bautista JM, Kaushik SJ (2005) Dietary protein source affects lipid metabolism in the European seabass (Dicentrarchus labrax). Comp Biochem Physiol 142A:19–31

    CAS  Google Scholar 

  • Enes P, Panserat S, Kaushik S, Oliva-Teles A (2006) Effect of normal and waxy maize starch on growth, food utilization and hepatic glucose metabolism in European sea bass (Dicentrarchus labrax) juveniles. Comp Biochem Physiol 143A:89–96

    CAS  Google Scholar 

  • Enes P, Panserat S, Kaushik S, Oliva-Teles A (2008) Growth performance and metabolic utilization of diets with native and waxy maize starch by gilthead sea bream (Sparus aurata) juveniles. Aquaculture 274:101–108

    Article  CAS  Google Scholar 

  • Fauconneau B (1988) Partial substitution of protein by a single amino-acid or an organic acid in rainbow trout diets. Aquaculture 70:97–106

    Article  CAS  Google Scholar 

  • Feurte S, Nicolaidis S, Even PC, Tome D, Mahe S, Fromentin G (1999) Rapid fall in plasma threonine followed by increased intermeal interval in response to first ingestion of a threonine-devoid diet in rats. Appetite 33:329–341

    Article  CAS  PubMed  Google Scholar 

  • Figueiredo-Silva AC, Corraze G, Gutiérrez J, Valente LMP (2009) Blackspot seabream (Pagellus bogaraveo) lipogenic and glycolytic are deeply related with dietary protein but not with starch type. Aquaculture 291:101–110

    Article  CAS  Google Scholar 

  • Figueiredo-Silva AC, Corraze G, Borges P, Valente LMP (2010) Dietary protein/lipid level and protein source effects on growth, tissue composition and lipid metabolism of blackspot seabream (Pagellus bogaraveo). Aquacult Nutr 16:173–187

    Article  CAS  Google Scholar 

  • Folch J, Lees M, Stanley GHS (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  • Forest C, Tordjman M, Glorian M, Duplus E, Chauvet G, Quette J, Beale EG, Antoine B (2003) Fatty acid recycling in adipocytes: a role for glyceroneogenesis and phosphoenolpyruvate carboxykinase. Biochem Soc Transact 31:1125–1129

    Article  CAS  Google Scholar 

  • Frost DV, Sandy HR (1951) Utilization of non-specific nitrogen sources by the adult protein depleted-rat. J Biol Chem 189:249–260

    CAS  PubMed  Google Scholar 

  • Gatlin DM, Barrows FT, Brown P, Dabrowski K, Gaylord TG, Hardy RW, Herman E, Hu GS, Krogdahl A, Nelson R, Overturf K, Rust M, Sealey W, Skonberg D, Souza EJ, Stone D, Wilson R, Wurtele E (2007) Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquacult Res 38:551–579

    Article  CAS  Google Scholar 

  • Gaye-Siessegger J, Focken U, Becker K (2006) Effect of dietary protein/carbohydrate ratio on activities of hepatic enzymes involved in the amino acid metabolism of Nile tilapia, Oreochromis niloticus (L.). Fish Physiol Biochem 32:275–282

    Article  CAS  Google Scholar 

  • Gaye-Siessegger J, Focken U, Abel H, Becker K (2007) Influence of dietary non-essential amino acid profile on growth performance and amino acid metabolism of Nile tilapia, Oreochromis niloticus (L.). Comp Biochem Physiol 146A:71–77

    CAS  Google Scholar 

  • Gómez-Requeni P, Mingarro M, Kirchner S, Calduch-Giner JA, Médale F, Corraze G, Panserat S, Martin SAM, Houlihan DF, Kaushik SJ, Perez-Sanchez J (2003) Effects of dietary amino acid profile on growth performance, key metabolic enzymes and somatotropic axis responsiveness of gilthead sea bream (Sparus aurata). Aquaculture 220:749–767

    Article  Google Scholar 

  • Gómez-Requeni P, Mingarro M, Calduch-Giner JA, Médale F, Martin SAM, Houlihan DF, Kaushik S, Pérez-Sánchez J (2004) Protein growth performance, amino acid utilisation and somatotropic axis responsiveness to fish meal replacement by plant protein sources in gilthead sea bream (Sparus aurata). Aquaculture 232:493–510

    Article  Google Scholar 

  • Green JA, Hardy RW, Brannon EL (2002) The optimum dietary essential: nonessential amino acid ratio for rainbow trout (Oncorhynchus mykiss), which maximizes nitrogen retention and minimizes nitrogen excretion. Fish Physiol Biochem 27:109–115

    Article  CAS  Google Scholar 

  • Gunn JM, Hanson RW, Meyuhas O, Reshef L, Ballard J (1975) Glucocorticoids and the regulation of phosphoenolpyruvate carboxykinase (guanosine triphosphate) in the rat. Biochem J 150:195–203

    CAS  PubMed  Google Scholar 

  • Hakimi P, Johnson MT, Yang J, Lepage DF, Conlon RA, Kalhan SC, Reshef L, Tilghman SM, Hanson RW (2005) Phosphoenolpyruvate carboxykinase and the critical role of cataplerosis in the control of hepatic metabolism. Nutr Metab 2:1–12

    Article  Google Scholar 

  • Hanson RW, Reshef L (1997) Regulation of phosphoenol-pyruvate carboxykinase (GTP) gene expression. Annu Rev Biochem 17:325–352

    Google Scholar 

  • Harper AE (1974) Non essential amino acids. J Nutr 104:965–967

    CAS  PubMed  Google Scholar 

  • Henderson RJ, Sargent JR (1981) Lipid biosynthesis in rainbow-trout, Salmo gairdnerii, fed diets of differing lipid content. Comp Biochem Physiol 69C:31–37

    CAS  Google Scholar 

  • Herzberg GR (1991) The 1990 Borden Award Lecture. Dietary regulation of fatty acid and triglyceride metabolism. Can J Physiol Pharmacol 69:1637–1647

    CAS  PubMed  Google Scholar 

  • Herzberg GR, Rogerson M (1981) The role of dietary-protein in hepatic lipogenesis in the young rat. Br J Nutr 45:529–538

    Article  CAS  PubMed  Google Scholar 

  • Hughes SG (1985) Evaluation of glutamic-acid and glycine as sources of nonessential amino-acids for lake trout (Salvenius namaycush) and rainbow trout (Salmo gairdnerii). Comp Biochem Physiol 81A:669–671

    Article  CAS  Google Scholar 

  • Iritani N, Nagashima K, Fukuda H, Katsurada A, Tanaka T (1986) Effects of dietary proteins on lipogenic enzymes in rat liver. J Nutr 116:190–197

    CAS  PubMed  Google Scholar 

  • Iritani N, Hosomi H, Fukuda H, Tada K, Ikeda H (1996) Soybean protein suppresses hepatic lipogenic enzyme gene expression in Wistar fatty rats. J Nutr 126:380–388

    CAS  PubMed  Google Scholar 

  • Jackson AA (1983) Amino acids essential and non essential? Lancet 321:1034–1037

    Article  Google Scholar 

  • Kaushik SJ (1977) Influence de la salinité sur le metabolisme azoté et le besoin en arginine chez la truite arc-en-ciel (Salmo gairdneri R.). These d’Etat, Univ. Bretagne Occidentale, Brest, France, p 230

  • Kaushik S, Hemre GI (2008) Plant proteins as alternative sources for fish feed and farmed fish quality. In: Lie O (ed) Improving farmed fish quality and safety. Woodhead Publishing, Cambridge, pp 301–327

    Google Scholar 

  • Kaushik S, Seiliez I (2010) Protein and amino acid nutrition and metabolism in fish: current knowledge and future needs. Aquacult Res 41:322–332

    Article  CAS  Google Scholar 

  • Kaushik SJ, Coves D, Dutto G, Blanc D (2004) Almost total replacement of fish meal by plant protein sources in the diet of a marine teleost, the European seabass, Dicentrarchus labrax. Aquaculture 230:391–404

    Article  CAS  Google Scholar 

  • Kayashita J, Shimaoka I, Nakajoh M, Kato N (1996) Feeding of buckwheat protein extract reduces hepatic triglyceride concentration, adipose tissue weight, and hepatic lipogenesis in rats. J Nutr Biochem 7:555–559

    Article  CAS  Google Scholar 

  • Kirchner S, Kaushik S, Panserat S (2003a) Effect of partial substitution of dietary protein by a single gluconeogenic dispensable amino acid on hepatic glucose metabolism in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol 134A:337–347

    CAS  Google Scholar 

  • Kirchner S, Kaushik S, Panserat S (2003b) Low protein intake is associated with reduced hepatic gluconeogenic enzyme expression in rainbow trout (Oncorhynchus mykiss). J Nutr 133:2561–2564

    CAS  PubMed  Google Scholar 

  • Laidlaw SA, Kopple JD (1987) Newer concepts of the indispensable amino acids. Am J Clin Nutr 46:593–605

    CAS  PubMed  Google Scholar 

  • Le Floc’h N, Seve B (1996) Régulation nutritionnelle du métabolisme de la thréonine. Journées Rech Porcine en France 28:421–428

    Google Scholar 

  • Lupiañez JA, Sanchezlozano MJ, Garciarejon L, Delahiguera M (1989) Long-term effect of a high protein non-carbohydrate diet on the primary liver and kidney metabolism in rainbow trout (Salmo gairdneri). Aquaculture 79:91–101

    Article  Google Scholar 

  • Mambrini M, Kaushik SJ (1994) Partial replacement of dietary protein nitrogen with dispensable amino acids in diets of Nile tilapia, Oreochromis niloticus. Comp Biochem Physiol 109A:469–477

    Article  CAS  Google Scholar 

  • Metón I, Mediavilla D, Caseras A, Canto E, Fernandez F, Baanante IV (1999) Effect of diet composition and ration size on key enzyme activities of glycolysis-gluconeogenesis, the pentose phosphate pathway and amino acid metabolism in liver of gilthead sea bream (Sparus aurata). Br J Nutr 82:223–232

    PubMed  Google Scholar 

  • Moon TW, Foster GD (1995) Tissue carbohydrate metabolism, gluconeogenesis and hormonal and environmental influences. In: Hochachka K, Mommsen TP (eds) Biochemistry and molecular biology of fishes. Elsevier, Amsterdam, pp 65–100

    Google Scholar 

  • Moore S, Stein WH (1951) Chromatography of amino acids on sulfonated polystyrene resins. J Biol Chem 192:663–681

    CAS  PubMed  Google Scholar 

  • Moundras C, Remesy C, Bercovici D, Demigne C (1993) Effect of dietary supplementation with glutamic acid or glutamine on the splanchnic and muscle metabolism of glucogenic amino acids in the rat. J Nutr Biochem 4:222–228

    Article  CAS  Google Scholar 

  • Moyano FJ, Cardenete G, Delahiguera M (1991) Nutritive and metabolic utilization of proteins with high glutamic acid content by the rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol 100A:759–762

    Article  CAS  Google Scholar 

  • Murai T, Ogata H, Hirasawa Y, Akiyama T, Nose T (1987) Portal absorption and hepatic uptake of amino acids in rainbow trout force fed complete diets containing casein or crystalline amino acids. Nippon Suisan Gakkaishi 53:1847–1859

    CAS  Google Scholar 

  • Nagai M, Ikeda S (1972) Carbohydrate metabolism in fish. III. Effect of dietary composition on metabolism of glucose-U-14C and glutamate-U-14C in carp. Bull Jpn Soc Sci Fish 38:137–143

    CAS  Google Scholar 

  • National Research Council (NRC) (1993) Nutritional requirements of fish. National Academy Press, Washington, p 114

    Google Scholar 

  • Padmakumarannair KG, Rajamohan T, Kurup PA (1998) Coconut kernel protein modifies the effect of coconut oil on serum lipids. Plant Foods Hum Nutr 53:133–144

    Article  Google Scholar 

  • Peres H, Oliva-Teles A (2006) Effect of the dietary essential to non-essential amino acid ratio on growth, feed utilization and nitrogen metabolism of European sea bass (Dicentrarchus labrax). Aquaculture 256:395–402

    Article  CAS  Google Scholar 

  • Reeds PJ (2000) Dispensable and indispensable amino acids for humans. J Nutr 130:1835S–1840S

    CAS  PubMed  Google Scholar 

  • Rérat A, Simoes-Nunes C, Mendy F, Vaissade P, Vaugelade P (1992) Splanchnic fluxes of amino acids after duodenal infusion of carbohydrate solutions containing free amino acids or oligopeptides in the non-anaesthetized pig. Br J Nutr 68:111–138

    Article  PubMed  Google Scholar 

  • Rollin X, Mambrini M, Abboudi T, Larondelle Y, Kaushik SJ (2003) The optimum dietary indispensable amino acid pattern for growing Atlantic salmon (Salmo salar L.) fry. Br J Nutr 90:865–876

    Article  CAS  PubMed  Google Scholar 

  • Ronnestad I, Conceição LEC, Aragão C, Dinis MT (2001) Assimilation and catabolism of dispensable and indispensable free amino acids in post-larval Senegal sole (Solea senegalensis). Comp Biochem Physiol 130C:461–466

    CAS  Google Scholar 

  • Rosebrough RW, Mitchell AD, McMurtry JP (1996) Dietary crude protein changes rapidly alter metabolism and plasma insulin-like growth factor I concentrations in broiler chickens. J Nutr 126:2888–2898

    CAS  PubMed  Google Scholar 

  • Santha NC, Ackman RG (1990) Nervonic acid versus tricosanoic acid as internal standards in quantitative gas chromatographic analyses of fish oil longer n-3 polyunsaturated fatty acid methyl esters. J Chromatogr Biomed Appl 533:1–10

    Article  Google Scholar 

  • Sargent JRS, Toucher DR, Bell JG (2002) The lipids. In: Halver JE, Hardy RW (eds) Fish nutrition. Academic Press, London, pp 181–257

    Google Scholar 

  • Scholz S, Braunbeck T, Segner H (1998) Viability and differential function of rainbow trout liver cells in primary culture: coculture with two permanent fish cells. In Vitro Cell Dev Biol 34:762–771

    Article  CAS  Google Scholar 

  • Schuhmacher A, Munch M, Gropp JM (1995) Non-essential amino acid sources in crystalline amino acid diets for trout (Oncorhynchus mykiss). J App Ichthyol 11:317–321

    Article  CAS  Google Scholar 

  • She P, Shiota M, Shelton KD, Chalkley R, Postic C, Magnuson MA (2000) Phosphoenolpyruvate carboxykinase is necessary for the integration of hepatic energy metabolism. Mol Cell Biol 20:6508–6517

    Article  CAS  PubMed  Google Scholar 

  • Shikata T, Shimeno S (1997) Regulation of carbohydrate metabolism in fish. 30. Effects of feed restriction and starvation on fatty acid synthesis and oxidation of glucose and alanine in carp hepatopancreas. Fish Sci 63:301–303

    CAS  Google Scholar 

  • Silva P, Andrade CAP, Timoteo V, Rocha E, Valente LMP (2006) Dietary protein, growth, nutrient utilization and body composition of juvenile blackspot seabream, Pagellus bogaraveo (Brunnich). Aquacult Res 37:1007–1014

    Article  CAS  Google Scholar 

  • Silva JMG, Espe M, Conceição LEC, Dias J, Valente LMP (2009) Senegalese sole juveniles (Solea senegalensis Kaup, 1858) grow equally well on diets devoid of fish meal provided the dietary amino acids are balanced. Aquaculture 296:309–317

    Article  CAS  Google Scholar 

  • Stein WH, Moore S (1954) The free amino acids of human blood plasma. J Biol Chem 211:915–926

    CAS  PubMed  Google Scholar 

  • Stucki WP, Harper AE (1961) Importance of dispensable amino acids for normal growth of chicks. J Nutr 74:377–383

    CAS  Google Scholar 

  • Stucki WP, Harper AE (1962) Effects of altering the ratio of indispensable to dispensable amino acids in diets for rats. J Nutr 78:278–286

    CAS  PubMed  Google Scholar 

  • Tacon AGJ, Metian M (2008) Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: trends and future prospects. Aquaculture 285:146–158

    Article  CAS  Google Scholar 

  • Tews JK, Lee KY-W, Harper AE (1980) Induction of threonine imbalance by dispensable amino acids: relationships between tissue amino acids and diet in rats. J Nutr 110:394–408

    CAS  PubMed  Google Scholar 

  • Wilson RP (2002) Amino acids and proteins. In: Halver JE, Hardy RW (eds) Fish nutrition. Academic Press, San Diego, pp 143–179

    Google Scholar 

  • Zar JH (1996) Biostatistical analysis. Prentice-Hall International, London

    Google Scholar 

Download references

Acknowledgments

This work was supported by “Optidietas project” (Agência de Inovação, Portugal, with the support of the European fund FEDER). A. Cláudia Figueiredo-Silva was supported by FCT, Fundação para a Ciência e Tecnologia of Portugal (PhD Grant SFRH/BD/22401/2005). Special thanks to L. Larroquet, C. Vachot, M.J. Borthaire, J. Breque, and António Júlio Pinto for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luísa M. P. Valente.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Figueiredo-Silva, A.C., Corraze, G., Kaushik, S. et al. Modulation of blackspot seabream (Pagellus bogaraveo) intermediary metabolic pathways by dispensable amino acids. Amino Acids 39, 1401–1416 (2010). https://doi.org/10.1007/s00726-010-0599-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0599-y

Keywords

Navigation