Skip to main content

Advertisement

Log in

Synthesis of α-carboxyphosphinopeptides derived from norleucine

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

In the present study, we describe in detail the synthesis of a relatively rare class of phosphorus compounds, α-carboxyphosphinopeptides. We prepared several norleucine-derived α-carboxyphosphinic pseudopeptides of the general formula Nle-Ψ[PO(OH)]-Gly. These compounds could have important applications as transition state-mimicking inhibitors for methionine or leucine aminopeptidases or other enzymes. For the preparation of the key α-carboxyphosphinate protected precursors, we investigated, compared and improved two different synthetic methods described in literature: the Arbuzov reaction of a silylated N-protected phosphinic acid with a bromoacetate ester and the nucleophilic addition of a mixed O-methyl S-phenyl N-protected phosphonic acid or a methyl N-protected phosphonochloridate with tert-butyl lithioacetate. We also prepared two N-Fmoc protected synthons, Fmoc-Nle-Ψ[PO(OH)]-Gly-COOH and Fmoc-Nle-Ψ[PO(OAd)]-Gly-COOH, and demonstrated that these precursors are suitable building blocks for the solid-phase synthesis of α-carboxyphosphinopeptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5

Similar content being viewed by others

Abbreviations

AdBr:

1-Bromoadamantane

Ad:

1-Adamantyl

BOP:

(Benzotriazol-1-yloxy)tris(dimethylamino)phosphonium hexafluorophosphate

BSA:

N,O-bis(trimethylsilyl)acetamide

Cbz:

Benzyloxycarbonyl

DIC:

N,N′-Diisopropylcarbodiimide

DIPEA:

N,N-Diisopropylethylamine

Fmoc:

9-Fluorenylmethyloxycarbonyl

Fmoc-Cl:

9-Flurenylmethoxycarbonyl chloride

Fmoc-OSu:

N-(9-fluorenylmethoxycarbonyloxy) succinimide

LiSPr:

Lithium n-propyl mercaptide

LDA:

Lithium diisopropylamide

TEA:

Triethylamine

TFA:

Trifluoroacetic acid

TMSCl:

Trimethylsilyl chloride

References

  • Abbas KA, Cook RD (1977) Acid-catalyzed hydrolysis of phosphinatesIII. The mechanism of hydrolysis of methyl and benzyl dialkylphosphinates. Can J Chem 55:3740–3750

    Article  CAS  Google Scholar 

  • Allen MC, Fuhrer W, Tuck B, Wade R, Wood JM (1989) Renin inhibitors—synthesis of transition-state analog inhibitors containing phosphorus-acid derivatives at the scissile bond. J Med Chem 32:1652–1661

    Article  CAS  PubMed  Google Scholar 

  • Bailey D, Cooper JB (1994) A structural comparison of 21-inhibitor complexes of the aspartic proteinase from Endothia parasitica. Protein Sci 3:2129–2143

    Article  CAS  PubMed  Google Scholar 

  • Bartlett PA, Kezer WB (1984) Phosphinic acid dipeptide analogs—potent, slow-binding inhibitors of aspartic peptidases. J Am Chem Soc 106:4282–4283

    Article  CAS  Google Scholar 

  • Bartlett PA, Hanson JE, Giannousis PP (1990) Potent inhibition of pepsin and penicillopepsin by phosphorus-containing peptide analogs. J Org Chem 55:6268–6274

    Article  CAS  Google Scholar 

  • Baylis EK, Campbell CD, Dingwall JG (1984) 1-Aminoalkylphosphonous acids. 1. Isosteres of the protein amino-acids. J Chem Soc Perkin Trans 1:2845–2853

    Article  Google Scholar 

  • Beveridge AJ, Dealwis C, Cooper JB (1995) A theoretical-study of the active-site complexes formed between endothiapepsin and three potent inhibitors—pepstatin-A, and peptide analogs containing difluorostatone and phosphostatine—implications for inhibitor design. Theochem J Mol Struct 333:87–97

    Article  CAS  Google Scholar 

  • Boger JS, Bock MG (1985) Renin inhibitors containing peptide isosteres. European patent application 85103367.0 (0156322A2)

  • Boger JS, Bock MG, Freidinger R, Veber DF, Patchett AA, Greenlee WJ, Parsons WH (1986) Peptide enzyme inhibitors. European patent application B6110125.1 (0 209 897 A2)

  • Casarez A, Chaudhary K, Cho A, Clarke M, Doerffler E, Fardis M, Kim CU, Pyun H, Sheng XC, Wang J (2008) Antiviral phosphinate compounds. International patent application PCT/US2007/015664 (WO 2008/005565 A2)

  • Coates L, Erskine PT, Crump MP, Wood SP, Cooper JB (2002) Five atomic resolution structures of endothiapepsin inhibitor complexes: implications for the aspartic proteinase mechanism. J Mol Biol 318:1405–1415

    Article  CAS  PubMed  Google Scholar 

  • Collinsova M, Jiracek J (2000) Phosphinic acid compounds in biochemistry, biology and medicine. Curr Med Chem 7:629–647

    CAS  PubMed  Google Scholar 

  • Collinsova M, Castro C, Garrow TA, Yiotakis A, Dive V, Jiracek J (2003) Combining combinatorial chemistry and affinity chromatography: highly selective inhibitors of human betaine: homocysteine S-methyltransferase. Chem Biol 10:113–122

    Article  CAS  PubMed  Google Scholar 

  • Dingwall JG, Baylis EK, Campbell CD (1977) Alpha aminophosphonous acid for inhibiting bacteria and yeast. United States patent 799,428 (4,147,780)

  • Dive V, Cotton J, Yiotakis A, Michaud A, Vassiliou S, Jiracek J, Vazeux G, Chauvet MT, Cuniasse P, Corvol P (1999) RXP 407, a phosphinic peptide, is a potent inhibitor of angiotensin I converting enzyme able to differentiate between its two active sites. Proc Natl Acad Sci USA 96:4330–4335

    Article  CAS  PubMed  Google Scholar 

  • Dive V, Georgiadis D, Matziari M, Makaritis A, Beau F, Cuniasse P, Yiotakis A (2004) Phosphinic peptides as zinc metalloproteinase inhibitors. Cell Mol Life Sci 61:2010–2019

    Article  CAS  PubMed  Google Scholar 

  • Dreyer GB, Metcalf BW, Tomaszek TA, Carr TJ, Chandler AC, Hyland L, Fakhoury SA, Magaard VW, Moore ML, Strickler JE, Debouck C, Meek TD (1989) Inhibition of human immunodeficiency virus-1 protease invitro—rational design of substrate-analog inhibitors. Proc Natl Acad Sci USA 86:9752–9756

    Article  CAS  PubMed  Google Scholar 

  • Dumy P, Escale R, Girard JP, Parello J, Vidal JP (1992) A convenient synthetic approach to new alpha-(9-fluorenylmethoxycarbonylamino)alkylphosphonic acid-derivatives. Synthesis, pp 1226–1228

  • Fields GB, Noble RL (1990) Solid-phase peptide-synthesis utilizing 9-fluorenylmethoxycarbonyl amino-acids. Int J Pept Prot Res 35:161–214

    Article  CAS  Google Scholar 

  • Fitch SJ (1964) Synthesis of hypophosphite esters from orthocarbonyl compounds. J Am Chem Soc 86:61–64

    Article  CAS  Google Scholar 

  • Fraser ME, Strynadka NCJ, Bartlett PA, Hanson JE, James MNG (1992) Crystallographic analysis of transition-state mimics bound to penicillopepsin—phosphorus-containing peptide analogs. Biochemistry 31:5201–5214

    Article  CAS  PubMed  Google Scholar 

  • Georgiadis D, Dive V, Yiotakis A (2001a) Synthesis and comparative study on the reactivity of peptidyl-type phosphinic esters: intramolecular effects in the alkaline and acidic cleavage of methyl beta-carboxyphosphinates. J Org Chem 66:6604–6610

    Article  CAS  PubMed  Google Scholar 

  • Georgiadis D, Matziari M, Yiotakis A (2001b) A highly efficient method for the preparation of phosphinic pseudodipeptidic blocks suitably protected for solid-phase peptide synthesis. Tetrahedron 57:3471–3478

    Article  CAS  Google Scholar 

  • Jensen CE, Bondebjerg J, Naerum L (2005) HIV protease inhibitors. International patent application PCT/DK2005/000296 (WO 2005/105843 A2)

  • Jiracek J, Yiotakis A, Vincent B, Lecoq A, Nicolaou A, Checler F, Dive V (1995) Development of highly potent and selective phosphinic peptide inhibitors of zinc endopeptidase—24–15 using combinatorial chemistry. J Biol Chem 270:21701–21706

    Article  CAS  PubMed  Google Scholar 

  • Jiracek J, Yiotakis A, Vincent B, Checler F, Dive V (1996) Development of the first potent and selective inhibitor of the zinc endopeptidase neurolysin using a systematic approach based on combinatorial chemistry of phosphinic peptides. J Biol Chem 271:19606–19611

    Article  CAS  PubMed  Google Scholar 

  • Kafarski P, Lejczak B (2000a) Synthesis of phosphono- and phosphinopeptides. In: Kukhar VP, Hudson HR (eds) Aminophosphinic and aminophosphonic acids. Chemistry and biological activity. Wiley, Chichester, pp 173–203

    Google Scholar 

  • Kafarski P, Lejczak B (2000b) The biological activity of phosphono- and phosphinopeptides. In: Kukhar VP, Hudson HR (eds) Aminophosphinic and aminophosphonic acids. Chemistry and biological activity. Wiley, Chichester, pp 407–442

    Google Scholar 

  • Li SO, Eakin RE (1955) Synthesis of N-phosphorylated derivatives of amino acids. J Am Chem Soc 77:1866–1870

    Article  CAS  Google Scholar 

  • Liboska R, Picha J, Hanclova I, Budesinsky M, Sanda M, Jiracek J (2008) Synthesis of methionine- and norleucine-derived phosphinopeptides. Tetrahedron Lett 49:5629–5631

    Article  CAS  Google Scholar 

  • Lunney EA, Hamilton HW, Hodges JC, Kaltenbronn JS, Repine JT, Badasso M, Cooper JB, Dealwis C, Wallace BA, Lowther WT, Dunn BM, Humblet C (1993) Analyses of ligand-binding in five endothiapepsin crystal complexes and their use in the design and evaluation of novel renin inhibitors. J Med Chem 36:3809–3820

    Article  CAS  PubMed  Google Scholar 

  • Malachowski WP, Coward JK (1994) The chemistry of phosphapeptides—investigations on the synthesis of phosphonamidate, phosphonate, and phosphinate analogs of glutamyl-gamma-glutamate. J Org Chem 59:7625–7634

    Article  CAS  Google Scholar 

  • Matsueda R, Yabe Y, Yamazaki M, Kokobu T, Hiwada T (1984) New renin-inhibitory peptides and their use. European patent application 85300738.3 (0152255 A2)

  • Morita Y, Hoshide Y, Taniguchi M, Ando R, Takashima J, Parsons WH (1987) 1-Aminoethylphosphinic acid derivative. Japanese patent application 62–166939 (64-013096)

  • Orain D, Mattes H (2006) Synthesis of imidazole phosphinic acids as I4AA analogues. Tetrahedron Lett 47:1253–1255

    Article  CAS  Google Scholar 

  • Patchett AA, Greenlee WJ, Parsons WH (1985) Phosphorous containing enzyme inhibitors. European patent application 86109764.0 (0210545A2)

  • Patel DV, Gordon EM, Schmidt RJ, Weller HN, Young MG, Zahler R, Barbacid M, Carboni JM, Gullobrown JL, Hunihan L, Ricca C, Robinson S, Seizinger BR, Tuomari AV, Manne V (1995) Phosphinyl acid-based bisubstrate analog inhibitors of Ras farnesyl-protein transferase. J Med Chem 38:435–442

    Article  CAS  PubMed  Google Scholar 

  • Petrillo EW Jr (1982) Amino and substituted amino phosphinyl–alkanoyl compositions. European patent application 82301923.7 (0 063896 A1)

  • Phillips MA, Kaplan AP, Rutter WJ, Bartlett PA (1992) Transition-state characterization—a new approach combining inhibitor analogs and variation in enzyme structure. Biochemistry 31:959–963

    Article  CAS  PubMed  Google Scholar 

  • Picha J, Budesinsky M, Sanda M, Jiracek J (2008) Synthesis of norleucine-derived phosphonopeptides. Tetrahedron Lett 49:4366–4368

    Article  CAS  Google Scholar 

  • Picha J, Budesinsky M, Hanclova I, Sanda M, Fiedler P, Vanek V, Jiracek J (2009) Efficient synthesis of phos phonodepsipeptides derived from norleucine. Tetrahedron 65:6090–6103

    Article  CAS  Google Scholar 

  • Raguin O, Fournie-Zaluski MC, Romieu A, Pelegrin A, Chatelet F, Pelaprat D, Barbet J, Roques BP, Gruaz-Guyon A (2005) A labeled neutral endopeptidase inhibitor as a potential tool for tumor diagnosis and prognosis. Angew Chem Int Ed 44:4058–4061

    Article  CAS  Google Scholar 

  • Sampson NS, Bartlett PA (1988) Synthesis of phosphonic acid-derivatives by oxidative activation of phosphinate esters. J Org Chem 53:4500–4503

    Article  CAS  Google Scholar 

  • Schramm VL, Horenstein BA, Kline PC (1994) Transition state analysis and inhibitor design for enzymatic reactions. J Biol Chem 269:18259–18262

    CAS  PubMed  Google Scholar 

  • Shiosaki K, Tasker AS, Opgenorth TJ (1991) Endothelin converting enzyme inhibitors. International patent application PCT/US91/08364 (WO92/13545)

  • Thottathil JK, Przybyla CA, Moniot JL (1984) Mild arbuzov reactions of phosphonous acids. Tetrahedron Lett 25:4737–4740

    Article  CAS  Google Scholar 

  • Vidossich P, Carloni P (2006) Binding of phosphinate and phosphonate inhibitors to aspartic proteases: a first-principles study. J Phys Chem B 110:1437–1442

    Article  CAS  PubMed  Google Scholar 

  • Wolfenden R, Radzicka A (1991) Transition-state analogues. Curr Opin Struct Biol 1:780–787

    Article  CAS  Google Scholar 

  • Yiotakis A, Vassiliou S, Jiracek J, Dive V (1996) Protection of the hydroxyphosphinyl function of phosphinic dipeptides by adamantyl Application to the solid-phase synthesis of phosphinic peptides. J Org Chem 61:6601–6605

    Article  CAS  PubMed  Google Scholar 

  • Yiotakis A, Georgiadis D, Matziari M, Makaritis A, Dive V (2004) Phosphinic peptides: synthetic approaches and biochemical evaluation as Zn-metalloprotease inhibitors. Curr Org Chem 8:1135–1158

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by a grant from the Grant Agency of the Czech Republic (203/06/1405, to J.J.), by the Chemical Genetics Consortium of the Ministry of Education, Youth and Sports of the Czech Republic (LC060777, to J.J.) and by the Research Project Z4 055 0506 of the Academy of Sciences of the Czech Republic (to IOCB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Jiráček.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pícha, J., Buděšínský, M., Fiedler, P. et al. Synthesis of α-carboxyphosphinopeptides derived from norleucine. Amino Acids 39, 1265–1280 (2010). https://doi.org/10.1007/s00726-010-0561-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0561-z

Keywords

Navigation