Skip to main content
Log in

Influence of assignment on the prediction of transmembrane helices in protein structures

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

α-Helical transmembrane proteins (TMPα) are composed of a series of helices embedded in the lipid bilayer. Due to technical difficulties, few 3D structures are available. Therefore, the design of structural models of TMPα is of major interest. We study the secondary structures of TMPα by analyzing the influence of secondary structures assignment methods (SSAMs). For this purpose, a published and updated benchmark databank of TMPα is used and several SSAMs (9) are evaluated. The analysis of the results points to significant differences in SSA depending on the methods used. Pairwise comparisons between SSAMs led to more than 10% of disagreement. Helical regions corresponding to transmembrane zones are often correctly characterized. The study of the sequence–structure relationship shows very limited differences with regard to the structural disagreement. Secondary structure prediction based on Bayes’ rule and using only a single sequence give correct prediction rates ranging from 78 to 81%. A structural alphabet approach gives a slightly better prediction, i.e., only 2% less than the best equivalent approach, whereas the prediction rate with a very different assignment bypasses 86%. This last result highlights the importance of the correct assignment choice to evaluate the prediction assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PDB:

Protein DataBank

SSAM:

Secondary structure assignment method

DSSP:

Dictionary secondary structure protein

TMPα :

α-Helical transmembrane proteins

References

  • Ahram M, Litou ZI, Fang R, Al-Tawallbeh G (2006) Estimation of membrane proteins in the human proteome. In Silico Biol 6:379–386

    CAS  PubMed  Google Scholar 

  • Almeida FC, Opella SJ (1997) fd coat protein structure in membrane environments: structural dynamics of the loop between the hydrophobic trans-membrane helix and the amphipathic in-plane helix. J Mol Biol 270:481–495

    Article  CAS  PubMed  Google Scholar 

  • Amirova SR, Milchevsky JV, Filatov IV, Esipova NG, Tumanyan VG (2007) Study and prediction of secondary structure for membrane proteins. J Biomol Struct Dyn 24:421–428

    CAS  PubMed  Google Scholar 

  • Arai M, Ikeda M, Shimizu T (2003) Comprehensive analysis of transmembrane topologies in prokaryotic genomes. Gene 304:77–86

    Article  CAS  PubMed  Google Scholar 

  • Arinaminpathy Y, Khurana E, Engelman DM, Gerstein MB (2009) Computational analysis of membrane proteins: the largest class of drug targets. Drug Discov Today 14:1130–1135

    Article  CAS  PubMed  Google Scholar 

  • Bagos PG, Liakopoulos TD, Hamodrakas SJ (2006) Algorithms for incorporating prior topological information in HMMs: application to transmembrane proteins. BMC Bioinformatics 7:189

    Article  PubMed  CAS  Google Scholar 

  • Bansal M, Kumar S, Velavan R (2000) HELANAL: a program to characterize helix geometry in proteins. J Biomol Struct Dyn 17:811–819

    CAS  PubMed  Google Scholar 

  • Becker OM, Marantz Y, Shacham S, Inbal B, Heifetz A, Kalid O, Bar-Haim S, Warshaviak D, Fichman M, Noiman S (2004) G protein-coupled receptors: in silico drug discovery in 3D. Proc Natl Acad Sci USA 101:11304–11309

    Article  CAS  PubMed  Google Scholar 

  • Benros C, Martin J, Tyagi M, and de Brevern AG (2007) Description of the local protein structure. I. Classical approaches. In: de Brevern AG (ed) Recent advances in structural bioinformatics. Research signpost, Trivandrum, pp 1–33

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242

    Article  CAS  PubMed  Google Scholar 

  • Bernsel A, Viklund H, Falk J, Lindahl E, von Heijne G, Elofsson A (2008) Prediction of membrane-protein topology from first principles. Proc Natl Acad Sci USA 105:7177–7181

    Article  CAS  PubMed  Google Scholar 

  • Beuming T, Weinstein H (2004) A knowledge-based scale for the analysis and prediction of buried and exposed faces of transmembrane domain proteins. Bioinformatics 20:1822–1835

    Article  CAS  PubMed  Google Scholar 

  • Cao B, Porollo A, Adamczak R, Jarrell M, Meller J (2006) Enhanced recognition of protein transmembrane domains with prediction-based structural profiles. Bioinformatics 22:303–309

    Article  CAS  PubMed  Google Scholar 

  • Chen CP, Rost B (2002a) Long membrane helices and short loops predicted less accurately. Protein Sci 11:2766–2773

    Article  CAS  PubMed  Google Scholar 

  • Chen CP, Rost B (2002b) State-of-the-art in membrane protein prediction. Appl Bioinformatics 1:21–35

    CAS  PubMed  Google Scholar 

  • Chen CP, Kernytsky A, Rost B (2002) Transmembrane helix predictions revisited. Protein Sci 11:2774–2791

    Article  CAS  PubMed  Google Scholar 

  • Colloc’h N, Etchebest C, Thoreau E, Henrissat B, Mornon JP (1993) Comparison of three algorithms for the assignment of secondary structure in proteins: the advantages of a consensus assignment. Protein Eng 6:377–382

    Article  PubMed  Google Scholar 

  • Cubellis MV, Caillez F, Blundell TL, Lovell SC (2005a) Properties of polyproline II, a secondary structure element implicated in protein–protein interactions. Proteins 58:880–892

    Article  CAS  PubMed  Google Scholar 

  • Cubellis MV, Cailliez F, Lovell SC (2005b) Secondary structure assignment that accurately reflects physical and evolutionary characteristics. BMC Bioinformatics 6(Suppl 4):S8

    Article  PubMed  CAS  Google Scholar 

  • Cuff JA, Barton GJ (1999) Evaluation and improvement of multiple sequence methods for protein secondary structure prediction. Proteins 34:508–519

    Article  CAS  PubMed  Google Scholar 

  • Cuthbertson JM, Doyle DA, Sansom MS (2005) Transmembrane helix prediction: a comparative evaluation and analysis. Protein Eng Des Sel 18:295–308

    Article  CAS  PubMed  Google Scholar 

  • de Brevern AG (2005) New assessment of protein blocks. In Silico Biol 5:283–289

    PubMed  Google Scholar 

  • de Brevern AG (2009) New opportunities to fight against infectious diseases and to identify pertinent drug targets with novel methodologies. Infect Disord Drug Targets 9:246–247

    PubMed  Google Scholar 

  • de Brevern AG, Etchebest C, Hazout S (2000) Bayesian probabilistic approach for predicting backbone structures in terms of protein blocks. Proteins 41:271–287

    Article  PubMed  Google Scholar 

  • de Brevern AG, Valadie H, Hazout S, Etchebest C (2002) Extension of a local backbone description using a structural alphabet: a new approach to the sequence–structure relationship. Protein Sci 11:2871–2886

    Article  PubMed  CAS  Google Scholar 

  • de Brevern AG, Wong H, Tournamille C, Colin Y, Le Van Kim C, Etchebest C (2005) A structural model of a seven-transmembrane helix receptor: the Duffy antigen/receptor for chemokine (DARC). Biochim Biophys Acta 1724:288–306

    PubMed  Google Scholar 

  • de Brevern AG, Etchebest C, Benros C, Hazout S (2007) “Pinning strategy”: a novel approach for predicting the backbone structure in terms of protein blocks from sequence. J Biosci 32:51–70

    Article  PubMed  Google Scholar 

  • de Brevern AG, Autin L, Colin Y, Bertrand O, Etchebest C (2009) In silico studies on DARC. Infect Disord Drug Targets 9:289–303

    PubMed  Google Scholar 

  • de Graaf C, Rognan D (2009) Customizing G Protein-coupled receptor models for structure-based virtual screening. Curr Pharm Des 15:4026–4048

    Article  PubMed  Google Scholar 

  • de Planque MR, Kruijtzer JA, Liskamp RM, Marsh D, Greathouse DV, Koeppe RE 2nd, de Kruijff B, Killian JA (1999) Different membrane anchoring positions of tryptophan and lysine in synthetic transmembrane alpha-helical peptides. J Biol Chem 274:20839–20846

    Article  PubMed  Google Scholar 

  • DeLano WLT (2002) The PyMOL molecular graphics system DeLano Scientific, San Carlos. http://www.pymol.org

  • Dupuis F, Sadoc JF, Mornon JP (2004) Protein secondary structure assignment through Voronoi tessellation. Proteins 55:519–528

    Article  CAS  PubMed  Google Scholar 

  • Elofsson A, von Heijne G (2007) Membrane protein structure: prediction vs reality. Annu Rev Biochem 76:125–140

    Article  CAS  PubMed  Google Scholar 

  • Enosh A, Fleishman SJ, Ben-Tal N, Halperin D (2004) Assigning transmembrane segments to helices in intermediate-resolution structures. Bioinformatics 20(Suppl 1):I122–I129

    Article  CAS  PubMed  Google Scholar 

  • Etchebest C, Benros C, Hazout S, de Brevern AG (2005) A structural alphabet for local protein structures: Improved prediction methods. Proteins 59:810–827

    Article  CAS  PubMed  Google Scholar 

  • Faham S, Yang D, Bare E, Yohannan S, Whitelegge JP, Bowie JU (2004) Side-chain contributions to membrane protein structure and stability. J Mol Biol 335:297–305

    Article  CAS  PubMed  Google Scholar 

  • Fleishman SJ, Ben-Tal N (2006) Progress in structure prediction of alpha-helical membrane proteins. Curr Opin Struct Biol 16:496–504

    Article  CAS  PubMed  Google Scholar 

  • Fleishman SJ, Unger VM, Ben-Tal N (2006) Transmembrane protein structures without X-rays. Trends Biochem Sci 31:106–113

    Article  CAS  PubMed  Google Scholar 

  • Fodje MN, Al-Karadaghi S (2002) Occurrence, conformational features and amino acid propensities for the pi-helix. Protein Eng 15:353–358

    Article  CAS  PubMed  Google Scholar 

  • Fourrier L, Benros C, de Brevern AG (2004) Use of a structural alphabet for analysis of short loops connecting repetitive structures. BMC Bioinformatics 5:58

    Article  PubMed  Google Scholar 

  • Frishman D, Argos P (1995) Knowledge-based protein secondary structure assignment. Proteins 23:566–579

    Article  CAS  PubMed  Google Scholar 

  • Grigorieff N, Ceska TA, Downing KH, Baldwin JM, Henderson R (1996) Electron-crystallographic refinement of the structure of bacteriorhodopsin. J Mol Biol 259:393–421

    Article  CAS  PubMed  Google Scholar 

  • Gromiha MM, Suwa M (2006) Discrimination of outer membrane proteins using machine learning algorithms. Proteins 63:1031–1037

    Article  CAS  PubMed  Google Scholar 

  • Harrington SE, Ben-Tal N (2009) Structural determinants of transmembrane helical proteins. Structure 17:1092–1103

    Article  CAS  PubMed  Google Scholar 

  • Hosseini S, Sadeghi M, Pezeshk H, Eslahchi C, Habibi M (2008) PROSIGN: a method for protein secondary structure assignment based on three-dimensional coordinates of consecutive C(alpha) atoms. Comput Biol Chem 32:406–411

    Article  CAS  PubMed  Google Scholar 

  • Ihaka R, Gentleman R (1996) R: a language for data analysis and graphics. J Comput Graph Stat 5:299–314

    Article  Google Scholar 

  • Ikeda M, Arai M, Lao DM, Shimizu T (2002) Transmembrane topology prediction methods: a re-assessment and improvement by a consensus method using a dataset of experimentally-characterized transmembrane topologies. In Silico Biol 2:19–33

    PubMed  Google Scholar 

  • Ikeda M, Arai M, Okuno T, Shimizu T (2003) TMPDB: a database of experimentally-characterized transmembrane topologies. Nucleic Acids Res 31:406–409

    Article  CAS  PubMed  Google Scholar 

  • Jacoby E, Bouhelal R, Gerspacher M, Seuwen K (2006) The 7 TM G-protein-coupled receptor target family. Chem Med Chem 1:761–782

    PubMed  Google Scholar 

  • Jones DT (1998) Do transmembrane protein superfolds exist? FEBS Lett 423:281–285

    Article  CAS  PubMed  Google Scholar 

  • Jones DT (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292:195–202

    Article  CAS  PubMed  Google Scholar 

  • Jones DT (2007) Improving the accuracy of transmembrane protein topology prediction using evolutionary information. Bioinformatics 23:538–544

    Article  CAS  PubMed  Google Scholar 

  • Joseph AP, Bornot A, de Brevern AG (2010) Local structure alphabets. In: Rangwala H, Karypis G (eds) Protein structure prediction. Wiley, London (in press)

  • Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637

    Article  CAS  PubMed  Google Scholar 

  • Kall L, Krogh A, Sonnhammer EL (2004) A combined transmembrane topology and signal peptide prediction method. J Mol Biol 338:1027–1036

    Article  CAS  PubMed  Google Scholar 

  • Kall L, Krogh A, Sonnhammer EL (2005) An HMM posterior decoder for sequence feature prediction that includes homology information. Bioinformatics 21(Suppl 1):i251–i257

    Article  PubMed  Google Scholar 

  • Kauko A, Illergard K, Elofsson A (2008) Coils in the membrane core are conserved and functionally important. J Mol Biol 380:170–180

    Article  CAS  PubMed  Google Scholar 

  • Kernytsky A, Rost B (2003) Static benchmarking of membrane helix predictions. Nucleic Acids Res 31:3642–3644

    Article  CAS  PubMed  Google Scholar 

  • King SM, Johnson WC (1999) Assigning secondary structure from protein coordinate data. Proteins 35:313–320

    Article  CAS  PubMed  Google Scholar 

  • Klammer M, Messina DN, Schmitt T, Sonnhammer EL (2009) MetaTM—a consensus method for transmembrane protein topology prediction. BMC Bioinformatics 10:314

    Article  PubMed  CAS  Google Scholar 

  • Kohonen T (1982) Self-organized formation of topologically correct feature maps. Biol Cybern 43:59–69

    Article  Google Scholar 

  • Kohonen T (2001) Self-organizing maps, 3rd edn. Springer, Berlin, p 501

    Google Scholar 

  • Krishnamurthy H, Piscitelli CL, Gouaux E (2009) Unlocking the molecular secrets of sodium-coupled transporters. Nature 459:347–355

    Article  CAS  PubMed  Google Scholar 

  • Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580

    Article  CAS  PubMed  Google Scholar 

  • Kullback S, Leibler RA (1951) On information and sufficiency. Ann Math Stat 22:79–86

    Article  Google Scholar 

  • Kumar S, Bansal M (1998) Geometrical and sequence characteristics of alpha-helices in globular proteins. Biophys J 75:1935–1944

    Article  CAS  PubMed  Google Scholar 

  • Labesse G, Colloc’h N, Pothier J, Mornon JP (1997) P-SEA: a new efficient assignment of secondary structure from C alpha trace of proteins. Comput Appl Biosci 13:291–295

    CAS  PubMed  Google Scholar 

  • Lacapere JJ, Pebay-Peyroula E, Neumann JM, Etchebest C (2007) Determining membrane protein structures: still a challenge!. Trends Biochem Sci 32:259–270

    Article  CAS  PubMed  Google Scholar 

  • Landry Y, Gies JP (2008) Drugs and their molecular targets: an updated overview. Fundam Clin Pharmacol 22:1–18

    Article  CAS  PubMed  Google Scholar 

  • Law RJ, Capener C, Baaden M, Bond PJ, Campbell J, Patargias G, Arinaminpathy Y, Sansom MS (2005) Membrane protein structure quality in molecular dynamics simulation. J Mol Graph Model 24:157–165

    Article  CAS  PubMed  Google Scholar 

  • Leinonen R, Diez FG, Binns D, Fleischmann W, Lopez R, Apweiler R (2004) UniProt archive. Bioinformatics 20:3236–3237

    Article  CAS  PubMed  Google Scholar 

  • Lomize AL, Pogozheva ID, Lomize MA, Mosberg HI (2006a) Positioning of proteins in membranes: a computational approach. Protein Sci 15:1318–1333

    Article  CAS  PubMed  Google Scholar 

  • Lomize MA, Lomize AL, Pogozheva ID, Mosberg HI (2006b) OPM: orientations of proteins in membranes database. Bioinformatics 22:623–625

    Article  CAS  PubMed  Google Scholar 

  • Madden DR, Gorga JC, Strominger JL, Wiley DC (1992) The three-dimensional structure of HLA-B27 at 2.1 A resolution suggests a general mechanism for tight peptide binding to MHC. Cell 70:1035–1048

    Article  CAS  PubMed  Google Scholar 

  • Majumdar I, Krishna SS, Grishin NV (2005) PALSSE: a program to delineate linear secondary structural elements from protein structures. BMC Bioinformatics 6:202

    Article  PubMed  CAS  Google Scholar 

  • Martelli PL, Fariselli P, Casadio R (2003) An ENSEMBLE machine learning approach for the prediction of all-alpha membrane proteins. Bioinformatics 19(Suppl 1):i205–i211

    Article  PubMed  Google Scholar 

  • Martin J, Letellier G, Marin A, Taly J-F, de Brevern AG, Gibrat JF (2005) Protein secondary structure assignment revisited: a detailed analysis of different assignment methods. BMC Struct Biol 5:17

    Article  PubMed  CAS  Google Scholar 

  • Matthews B (1975) Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta 405:442–451

    CAS  PubMed  Google Scholar 

  • Moller S, Kriventseva EV, Apweiler R (2000) A collection of well characterised integral membrane proteins. Bioinformatics 16:1159–1160

    Article  CAS  PubMed  Google Scholar 

  • Moller S, Croning MD, Apweiler R (2001) Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics 17:646–653

    Article  CAS  PubMed  Google Scholar 

  • Mornon JP, Lehn P, Callebaut I (2009) Molecular models of the open and closed states of the whole human CFTR protein. Cell Mol Life Sci 66:3469–3486

    Article  CAS  PubMed  Google Scholar 

  • Newby ZE, O’Connell JD 3rd, Gruswitz F, Hays FA, Harries WE, Harwood IM, Ho JD, Lee JK, Savage DF, Miercke LJ et al (2009) A general protocol for the crystallization of membrane proteins for X-ray structural investigation. Nat Protoc 4:619–637

    Article  CAS  PubMed  Google Scholar 

  • Newstead S, Ferrandon S, Iwata S (2008) Rationalizing alpha-helical membrane protein crystallization. Protein Sci 17:466–472

    Article  CAS  PubMed  Google Scholar 

  • Nilsson J, Persson B, Von Heijne G (2002) Prediction of partial membrane protein topologies using a consensus approach. Protein Sci 11:2974–2980

    Article  CAS  PubMed  Google Scholar 

  • Nugent T, Jones DT (2009) Transmembrane protein topology prediction using support vector machines. BMC Bioinformatics 10:159

    Article  PubMed  CAS  Google Scholar 

  • Oberai A, Ihm Y, Kim S, Bowie JU (2006) A limited universe of membrane protein families and folds. Protein Sci 15:1723–1734

    Article  CAS  PubMed  Google Scholar 

  • Offmann B, Tyagi M, de Brevern AG (2007) Local protein structures. Curr Bioinform 3:165–202

    Article  Google Scholar 

  • Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE et al (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289:739–745

    Article  CAS  PubMed  Google Scholar 

  • Pauling L, Corey RB (1951a) Atomic coordinates and structure factors for two helical configurations of polypeptide chains. Proc Natl Acad Sci USA 37:235–240

    Article  CAS  PubMed  Google Scholar 

  • Pauling L, Corey RB (1951b) The pleated sheet, a new layer configuration of polypeptide chains. Proc Natl Acad Sci USA 37:251–256

    Article  CAS  PubMed  Google Scholar 

  • Rabiner LR (1989) A tutorial on hidden Markov models and selected application in speech recognition. Proc IEEE 77:257–286

    Article  Google Scholar 

  • Rangwala H, Kauffman C, Karypis G (2009) svmPRAT: SVM-based protein residue annotation toolkit. BMC Bioinformatics 10:439

    Article  PubMed  CAS  Google Scholar 

  • Richards FM, Kundrot CE (1988) Identification of structural motifs from protein coordinate data: secondary structure and first-level supersecondary structure. Proteins 3:71–84

    Article  CAS  PubMed  Google Scholar 

  • Riek RP, Rigoutsos I, Novotny J, Graham RM (2001) Non-alpha-helical elements modulate polytopic membrane protein architecture. J Mol Biol 306:349–362

    Article  CAS  PubMed  Google Scholar 

  • Rigoutsos I, Riek P, Graham RM, Novotny J (2003) Structural details (kinks and non-alpha conformations) in transmembrane helices are intrahelically determined and can be predicted by sequence pattern descriptors. Nucleic Acids Res 31:4625–4631

    Article  CAS  PubMed  Google Scholar 

  • Rosenhouse-Dantsker A, Logothetis DE (2006) New roles for a key glycine and its neighboring residue in potassium channel gating. Biophys J 91:2860–2873

    Article  CAS  PubMed  Google Scholar 

  • Rost B, Sander C, Schneider R (1994) Redefining the goals of protein secondary structure prediction. J Mol Biol 235:13–26

    Article  CAS  PubMed  Google Scholar 

  • Rost B, Fariselli P, Casadio R (1996) Topology prediction for helical transmembrane proteins at 86% accuracy. Protein Sci 5:1704–1718

    Article  CAS  PubMed  Google Scholar 

  • Roy Choudhury A, Novic M (2009) Data-driven model for the prediction of protein transmembrane regions. SAR QSAR Environ Res 20:741–754

    Article  CAS  PubMed  Google Scholar 

  • Sammon JW Jr (1969) A nonlinear mapping for data structure analysis. IEEE Trans Comput 18:401–409

    Article  Google Scholar 

  • Sarkar CA, Dodevski I, Kenig M, Dudli S, Mohr A, Hermans E, Pluckthun A (2008) Directed evolution of a G protein-coupled receptor for expression, stability, and binding selectivity. Proc Natl Acad Sci USA 105:14808–14813

    Article  CAS  PubMed  Google Scholar 

  • Shacham S, Marantz Y, Bar-Haim S, Kalid O, Warshaviak D, Avisar N, Inbal B, Heifetz A, Fichman M, Topf M et al (2004) PREDICT modeling and in-silico screening for G-protein coupled receptors. Proteins 57:51–86

    Article  CAS  PubMed  Google Scholar 

  • Shen H, Chou JJ (2008) MemBrain: improving the accuracy of predicting transmembrane helices. PLoS One 3:e2399

    Google Scholar 

  • Sklenar H, Etchebest C, Lavery R (1989) Describing protein structure: a general algorithm yielding complete helicoidal parameters and a unique overall axis. Proteins 6:46–60

    Article  CAS  PubMed  Google Scholar 

  • Stevens TJ, Arkin IT (1999) Are membrane proteins “inside-out” proteins? Proteins 36:135–143

    Article  CAS  PubMed  Google Scholar 

  • Taylor WR, Jones DT, Green NM (1994) A method for alpha-helical integral membrane protein fold prediction. Proteins 18:281–294

    Article  CAS  PubMed  Google Scholar 

  • Taylor T, Rivera M, Wilson G, Vaisman II (2005) New method for protein secondary structure assignment based on a simple topological descriptor. Proteins 60:513–524

    Article  CAS  PubMed  Google Scholar 

  • Thomas A, Bouffioux O, Geeurickx D, Brasseur R (2001) Pex, analytical tools for PDB files I. GF-Pex: basic file to describe a protein. Proteins 43:28–36

    Article  CAS  PubMed  Google Scholar 

  • Tusnady GE, Simon I (1998) Principles governing amino acid composition of integral membrane proteins: application to topology prediction. J Mol Biol 283:489–506

    Article  CAS  PubMed  Google Scholar 

  • Tusnady GE, Simon I (2001) The HMMTOP transmembrane topology prediction server. Bioinformatics 17:849–850

    Article  CAS  PubMed  Google Scholar 

  • Tusnady GE, Dosztanyi Z, Simon I (2004) Transmembrane proteins in the Protein Data Bank: identification and classification. Bioinformatics 20:2964–2972

    Article  CAS  PubMed  Google Scholar 

  • Tusnady GE, Dosztanyi Z, Simon I (2005a) PDB_TM: selection and membrane localization of transmembrane proteins in the protein data bank. Nucleic Acids Res 33:D275–D278

    Article  CAS  PubMed  Google Scholar 

  • Tusnady GE, Dosztanyi Z, Simon I (2005b) TMDET: web server for detecting transmembrane regions of proteins by using their 3D coordinates. Bioinformatics 21:1276–1277

    Article  CAS  PubMed  Google Scholar 

  • Tyagi M, Gowri VS, Srinivasan N, de Brevern AG, Offmann B (2006a) A substitution matrix for structural alphabet based on structural alignment of homologous proteins and its applications. Proteins 65:32–39

    Article  CAS  PubMed  Google Scholar 

  • Tyagi M, Sharma P, Swamy CS, Cadet F, Srinivasan N, de Brevern AG, Offmann B (2006b) Protein Block Expert (PBE): a web-based protein structure analysis server using a structural alphabet. Nucleic Acids Res 34:W119–W123

    Article  CAS  PubMed  Google Scholar 

  • Tyagi M, Bornot A, Offmann B, de Brevern AG (2009a) Analysis of loop boundaries using different local structure assignment methods. Protein Sci 18:1869–1881

    Article  CAS  PubMed  Google Scholar 

  • Tyagi M, Bornot A, Offmann B, de Brevern AG (2009b) Protein short loop prediction in terms of a structural alphabet. Comput Biol Chem 33:329–333

    Article  CAS  PubMed  Google Scholar 

  • Ubarretxena-Belandia I, Engelman DM (2001) Helical membrane proteins: diversity of functions in the context of simple architecture. Curr Opin Struct Biol 11:370–376

    Article  CAS  PubMed  Google Scholar 

  • UniProt_Consortium (2010) The Universal Protein Resource (UniProt) in 2010. Nucleic Acids Res 38:D142–D148

    Article  CAS  Google Scholar 

  • Vaidehi N, Floriano WB, Trabanino R, Hall SE, Freddolino P, Choi EJ, Zamanakos G, Goddard WA 3rd (2002) Prediction of structure and function of G protein-coupled receptors. Proc Natl Acad Sci USA 99:12622–12627

    Article  CAS  PubMed  Google Scholar 

  • Viklund H, Elofsson A (2004) Best alpha-helical transmembrane protein topology predictions are achieved using hidden Markov models and evolutionary information. Protein Sci 13:1908–1917

    Article  CAS  PubMed  Google Scholar 

  • von Heijne G (2006) Membrane-protein topology. Nat Rev Mol Cell Biol 7:909–918

    Article  CAS  Google Scholar 

  • von Heijne G, Gavel Y (1988) Topogenic signals in integral membrane proteins. Eur J Biochem 174:671–678

    Article  Google Scholar 

  • Wallin E, von Heijne G (1998) Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci 7:1029–1038

    Article  CAS  PubMed  Google Scholar 

  • White SH (2004) The progress of membrane protein structure determination. Protein Sci 13:1948–1949

    Article  CAS  PubMed  Google Scholar 

  • White SH (2009) Biophysical dissection of membrane proteins. Nature 459:344–346

    Article  CAS  PubMed  Google Scholar 

  • White SH, von Heijne G (2005) Transmembrane helices before, during, and after insertion. Curr Opin Struct Biol 15:378–386

    Article  CAS  PubMed  Google Scholar 

  • White SH, Wimley WC (1999) Membrane protein folding and stability: physical principles. Annu Rev Biophys Biomol Struct 28:319–365

    Article  CAS  PubMed  Google Scholar 

  • White SH, Ladokhin AS, Jayasinghe S, Hristova K (2001) How membranes shape protein structure. J Biol Chem 276:32395–32398

    Article  CAS  PubMed  Google Scholar 

  • Yarov-Yarovoy V, Schonbrun J, Baker D (2006) Multipass membrane protein structure prediction using Rosetta. Proteins 62:1010–1025

    Article  CAS  PubMed  Google Scholar 

  • Yohannan S, Faham S, Yang D, Whitelegge JP, Bowie JU (2004a) The evolution of transmembrane helix kinks and the structural diversity of G protein-coupled receptors. Proc Natl Acad Sci USA 101:959–963

    Article  CAS  PubMed  Google Scholar 

  • Yohannan S, Yang D, Faham S, Boulting G, Whitelegge J, Bowie JU (2004b) Proline substitutions are not easily accommodated in a membrane protein. J Mol Biol 341:1–6

    Article  CAS  PubMed  Google Scholar 

  • Zemla A, Venclovas C, Fidelis K, Rost B (1999) A modified definition of Sov, a segment-based measure for protein secondary structure prediction assessment. Proteins 34:220–223

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Devries ME, Skolnick J (2006) Structure modeling of all identified G protein-coupled receptors in the human genome. PLoS Comput Biol 2:e13

    Article  PubMed  CAS  Google Scholar 

  • Zhao G, London E (2006) An amino acid “transmembrane tendency” scale that approaches the theoretical limit to accuracy for prediction of transmembrane helices: relationship to biological hydrophobicity. Protein Sci 15:1987–2001

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Zhou Y (2003) Predicting the topology of transmembrane helical proteins using mean burial propensity and a hidden-Markov-model-based method. Protein Sci 12:1547–1555

    Article  CAS  PubMed  Google Scholar 

  • Zucic D, Juretic D (2004) Precise annotation of transmembrane segments with Garlic—a free molecular visualization program. Croatica Chemica Acta 77:397–401

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the reviewers for their comments that helped improving the manuscript. They also thank Aurélie Urbain for her help in designing the new updated databank. This work was supported by grants from the Ministère de la Recherche, Université Paris Diderot-Paris 7, National Institute for Blood Transfusion (INTS) and National Institute for Health and Medical Research (INSERM). AB had a grant from the Ministère de la Recherche. AdB was also supported by an Indo-French collaborative grant (grant from CEFIPRA number 3903-E).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre G. de Brevern.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 30 kb)

(DOC 62 kb)

(DOC 27 kb)

(DOC 46 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pylouster, J., Bornot, A., Etchebest, C. et al. Influence of assignment on the prediction of transmembrane helices in protein structures. Amino Acids 39, 1241–1254 (2010). https://doi.org/10.1007/s00726-010-0559-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0559-6

Keywords

Navigation