Skip to main content
Log in

Dietary supplementation with l-arginine or N-carbamylglutamate enhances intestinal growth and heat shock protein-70 expression in weanling pigs fed a corn- and soybean meal-based diet

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

This study determined effects of dietary supplementation with l-arginine (Arg) or N-carbamylglutamate (NCG) on intestinal health and growth in early-weaned pigs. Eighty-four Landrace × Yorkshire pigs (average body weight of 5.56 ± 0.07 kg; weaned at 21 days of age) were fed for 7 days one of the three isonitrogenous diets: (1) a corn- and soybean meal-based diet (CSM), (2) CSM + 0.08% NCG (0.08%), and (3) CSM + 0.6% Arg. There were four pens of pigs per diet (7 pigs/pen). At the end of a 7-day feeding period, six piglets were randomly selected from each treatment for tissue collections. Compared with the control group, Arg or NCG supplementation increased (P < 0.05): (1) Arg concentrations in plasma, (2) small-intestinal growth, (3) villus height in duodenum, jejunum and ileum, (4) crypt depth in jejunum and ileum, (5) goblet cell counts in intestinal mucosae, and (6) whole-body weight gain in pigs. Real-time polymerase chain reaction and western blotting analyses revealed that both mRNA and protein levels for heat shock protein-70 (HSP70) were higher (P < 0.05) in the intestinal mucosae of Arg- or NCG-supplemented pigs than in the control group. Furthermore, the incidence of diarrhea in the NCG group was 18% lower (P < 0.01) than that in the control group. Collectively, these results indicate that dietary supplementation with 0.6% Arg or 0.08% NCG enhances intestinal HSP70 gene expression, intestinal growth and integrity, and the availability of dietary nutrients for whole-body weight gain in postweaning pigs fed a CSM-based diet. Thus, Arg or NCG is a functional ingredient in the weaning diet to improve nutrition, health, and growth performance of these neonates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Arg:

l-Arginine

CSM:

Corn- and soybean meal-based diet

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

HSP70:

Heat shock protein 70

IEL:

Intraepithelial leukocytes

NAG:

N-Acetylglutamate

NCG:

N-carbamylglutamate

NO:

Nitric oxide

RT-PCR:

Real-time polymerase chain reaction

References

  • Baker DH (2009) Advances in protein-amino acid nutrition of poultry. Amino Acids 37:29–41

    Article  PubMed  CAS  Google Scholar 

  • Beckmann RP, Mizzen LE, Welch WJ (1990) Interaction of Hsp 70 with newly synthesized proteins: implications for protein folding and assembly. Science 248:850–854

    Article  PubMed  CAS  Google Scholar 

  • Bergen WG, Wu G (2009) Intestinal nitrogen recycling and utilization in health and disease. J Nutr 139:821–825

    Article  PubMed  CAS  Google Scholar 

  • Blachier F, Mariotti F, Huneau JF et al (2007) Effects of amino acid-derived luminal metabolites on the colonic epithelium and physiopathological consequences. Amino Acids 33:547–562

    Article  PubMed  CAS  Google Scholar 

  • Blachier F, Lancha AH Jr, Boutry C et al (2010) Alimentary proteins, amino acids and cholesterolemia. Amino Acids 38:15–22

    Article  PubMed  CAS  Google Scholar 

  • Chen LX, Li P, Wang JJ et al (2009) Catabolism of nutritionally essential amino acids in developing porcine enterocytes. Amino Acids 37:143–152

    Article  PubMed  CAS  Google Scholar 

  • David JC, Grongnet JF, Lalles JP (2002) Weaning affects the expression of heat shock proteins in different regions of the gastrointestinal tract of piglets. J Nutr 132:2551–2561

    PubMed  CAS  Google Scholar 

  • Davis TA, Nguyen HV, Garciaa-Bravo R et al (1994) Amino acid composition of human milk is not unique. J Nutr 124:1126–1132

    PubMed  CAS  Google Scholar 

  • Deng D, Yin YL, Chu WY et al (2009) Impaired translation initiation activation and reduced protein synthesis in weaned piglets fed a low-protein diet. J Nutr Biochem 20:544–552

    Article  PubMed  CAS  Google Scholar 

  • Dunsford BR, Haensly WE, Knabe DA (1991) Effects of diet on acidic and neutral goblet cell populations in the small intestine of early weaned pigs. Am J Vet Res 52:1743–1746

    PubMed  CAS  Google Scholar 

  • Eklou-Lawson M, Bernard F, Neveux N et al (2009) Colonic luminal ammonia and portal blood l-glutamine and l-arginine concentrations: a possible link between colon mucosa and liver ureagenesis. Amino Acids 37:751–760

    Article  PubMed  CAS  Google Scholar 

  • Elango R, Ball RO, Pencharz PB (2009) Amino acid requirements in humans: with a special emphasis on the metabolic availability of amino acids. Amino Acids 37:19–27

    Article  PubMed  CAS  Google Scholar 

  • Flynn NE, Bird JG, Guthrie AS (2009) Glucocorticoid regulation of amino acid and polyamine metabolism in the small intestine. Amino Acids 37:123–129

    Article  PubMed  CAS  Google Scholar 

  • Frank J, Escobar J, Nguyen HV et al (2007) Oral N-carbamylglutamate supplementation increases protein synthesis in skeletal muscle of piglets. J Nutr 137:315–319

    PubMed  CAS  Google Scholar 

  • Fu WJ, Hu J, Spencer T et al (2006) Statistical models in assessing fold changes of gene expression in real-time RT-PCR experiments. Comput Biol Chem 30:21–26

    Article  PubMed  CAS  Google Scholar 

  • Fu WJ, Stromberg AJ, Viele K et al (2010) Statistics and bioinformatics in nutritional sciences: analysis of complex data in the era of systems biology. J Nutr Biochem. doi:10.1016/j.jnutbio.2009.11.007

    PubMed  Google Scholar 

  • Gessler P, Buchal P, Schwenk HU et al (2010) Favourable long-term outcome after immediate treatment of neonatal hyperammonemia due to N-acetylglutamate synthase deficiency. Eur J Pediatr 169:197–199

    Article  PubMed  Google Scholar 

  • Grimble GK (2007) Adverse gastrointestinal effects of arginine and related amino acids. J Nutr 137:1693S–1701S

    PubMed  CAS  Google Scholar 

  • Gu X, Li D, She R (2002) Effect of weaning on small intestinal structure and function in the piglet. Arch Tierernahr 56:275–286

    PubMed  CAS  Google Scholar 

  • Hampson DJ (1986) Alterations in piglet small intestinal structure at weaning. Res Vet Sci 40:32–40

    PubMed  CAS  Google Scholar 

  • Han J, Liu YL, Fan W et al (2009) Dietary l-arginine supplementation alleviates immunosuppression induced by cyclophosphamide in weaned pigs. Amino Acids 37:643–651

    Article  PubMed  CAS  Google Scholar 

  • Haynes TE, Li P, Li XL et al (2009) l-Glutamine or l-alanyl-l-glutamine prevents oxidant- or endotoxin-induced death of neonatal enterocytes. Amino Acids 37:131–142

    Article  PubMed  CAS  Google Scholar 

  • He QH, Kong XF, Wu GY et al (2009) Metabolomic analysis of the response of growing pigs to dietary l-arginine supplementation. Amino Acids 37:199–208

    Article  PubMed  CAS  Google Scholar 

  • Hernandez A, Hansen CF, Mullan BP et al (2009) l-Arginine supplementation of milk liquid or dry diets fed to pigs after weaning has a positive effect on production in the first three weeks after weaning at 21 day of age. Anim Feed Sci Technol 154:102–111

    Article  CAS  Google Scholar 

  • Hou YQ, Wang L, Ding BY et al (2010) Dietary α-ketoglutarate supplementation ameliorates intestinal injury in lipopolysaccharide-challenged piglets. Amino Acids. doi:10.1007/s00726-010-0473-y

    Google Scholar 

  • Jobgen WS, Jobgen SC, Li H et al (2007) Analysis of nitrite and nitrate in biological samples using high-performance liquid chromatography. J Chromatogr B 851:71–82

    Article  CAS  Google Scholar 

  • Jobgen W, Fu WJ, Gao H et al (2009) High fat feeding and dietary l-arginine supplementation differentially regulate gene expression in rat white adipose tissue. Amino Acids 37:187–198

    Article  PubMed  CAS  Google Scholar 

  • Kim SW, Wu G (2004) Dietary arginine supplementation enhances the growth of milk-fed young pigs. J Nutr 134:625–630

    PubMed  CAS  Google Scholar 

  • Kim SW, Wu G (2009) Regulatory role for amino acids in mammary gland growth and milk synthesis. Amino Acids 37:89–95

    Article  PubMed  CAS  Google Scholar 

  • Kong XF, Wu GY, Liao YP et al (2007) Effects of Chinese herbal ultra-fine powder as a dietary additive on growth performance, serum metabolites and intestinal health in early-weaned piglets. Livest Sci 108:272–275

    Article  Google Scholar 

  • Kong XF, Yin YL, He QH et al (2009) Dietary supplementation with Chinese herbal powder enhances ileal digestibilities and serum concentrations of amino acids in young pigs. Amino Acids 37:573–582

    Article  PubMed  CAS  Google Scholar 

  • Koninkx JF, Stemerdink AF, Mirck MH et al (1988) Histochemical changes in the composition of mucins in goblet cells during methotrexate-induced mucosal atrophy in rats. Exp Pathol 34:125–132

    PubMed  CAS  Google Scholar 

  • Kyriakidis DA, Tiligada E (2009) Signal transduction and adaptive regulation through bacterial two-component systems: the Escherichia coli AtoSC paradigm. Amino Acids 37:443–458

    Article  PubMed  CAS  Google Scholar 

  • Lalles JP, Bosi P, Janczyk P et al (2009) Impact of bioactive substances on the gastrointestinal tract and performance of weaned piglets: a review. Animal 3:1625–1643

    Article  CAS  Google Scholar 

  • Law GK, Bertolo RF, Adjiri-Awere A et al (2007) Adequate oral threonine is critical for mucin production and gut function in neonatal piglets. Am J Physiol Gastrointest Liver Physiol 292:G1293–G1301

    Article  PubMed  CAS  Google Scholar 

  • Leibholz J (1982) Arginine requirements of pigs between 7 and 28 days of age. Aust J Agric Res 33:165–170

    Article  CAS  Google Scholar 

  • Lenaerts K, Renes J, Bouwman FG et al (2007) Arginine deficiency in preconfluent intestinal Caco-2 cells modulates expression of proteins involved in proliferation, apoptosis, and heat shock response. Proteomics 7:565–577

    Article  PubMed  CAS  Google Scholar 

  • Li XL, Bazer FW, Gao HJ et al (2009a) Amino acids and gaseous signaling. Amino Acids 37:65–78

    Article  PubMed  CAS  Google Scholar 

  • Li P, Kim SW, Li XL et al (2009b) Dietary supplementation with cholesterol and docosahexaenoic acid affects concentrations of amino acids in tissues of young pigs. Amino Acids 37:709–716

    Article  PubMed  CAS  Google Scholar 

  • Ma XY, Lin YC, Jiang ZY et al (2010) Dietary arginine supplementation enhances antioxidative capacity and improves meat quality of finishing pigs. Amino Acids 38:95–102

    Article  PubMed  CAS  Google Scholar 

  • Malyshev IY, Manukhina EB, Mikoyan VD et al (1995) Nitric oxide is involved in heat shock-induced HSP70 accumulation. FEBS Lett 370:159–162

    Article  PubMed  CAS  Google Scholar 

  • Manucha W, Valles PG (2008) Cytoprotective role of nitric oxide associated with Hsp70 expression in neonatal obstructive nephropathy. Nitric Oxide 18:204–215

    Article  PubMed  CAS  Google Scholar 

  • Marquardt RR, Jin LZ, Kim JW et al (1999) Passive protective effect of egg-yolk antibodies against enterotoxigenic Escherichia coli K88+ infection in neonatal and early-weaned piglets. FEMS Immunol Med Microbiol 23:283–288

    PubMed  CAS  Google Scholar 

  • Otaka M, Odashima M, Watanabe S (2006) Role of heat shock proteins (molecular chaperones) in intestinal mucosal protection. Biochem Bioph Res Commun 348:1–5

    Article  CAS  Google Scholar 

  • Palii SS, Kays CE, Deval C et al (2009) Specificity of amino acid regulated gene expression: analysis of gene subjected to either complete or single amino acid deprivation. Amino Acids 37:79–88

    Article  PubMed  CAS  Google Scholar 

  • Rhoads JM, Wu G (2009) Glutamine, arginine, and leucine signaling in the intestine. Amino Acids 37:111–122

    Article  CAS  Google Scholar 

  • Steel RGD, Torrie JH, Dickey DA (1997) Principles and procedures of statistics: a biomedical approach. McGraw-Hill, New York, pp 178–203

    Google Scholar 

  • Stipanuk MH, Ueki I, Dominy JE et al (2009) Cysteine dioxygenase: a robust system for regulation of cellular cysteine levels. Amino Acids 37:55–63

    Article  PubMed  CAS  Google Scholar 

  • Suryawan A, O’Connor PMJ, Bush JA et al (2009) Differential regulation of protein synthesis by amino acids and insulin in peripheral and visceral tissues of neonatal pigs. Amino Acids 37:97–104

    Article  PubMed  CAS  Google Scholar 

  • Tan BE, Li XG, Kong XF et al (2009a) Dietary l-arginine supplementation enhances the immune status in early-weaned piglets. Amino Acids 37:323–331

    Article  PubMed  CAS  Google Scholar 

  • Tan BE, Yin YL, Liu ZQ et al (2009b) Dietary l-arginine supplementation increases muscle gain and reduces body fat mass in growing-finishing pigs. Amino Acids 37:169–175

    Article  PubMed  CAS  Google Scholar 

  • Tan B, Yin Y, Kong X et al (2010) l-Arginine stimulates proliferation and prevents endotoxin-induced death of intestinal cells. Amino Acids. doi:10.1007/s00726-009-0334-8

  • Wang X, Qiao SY, Yin YL et al (2007) Deficiency or excess of dietary threonine reduces protein synthesis in jejunum and skeletal muscle of young pigs. J Nutr 137:1442–1446

    PubMed  CAS  Google Scholar 

  • Wang JJ, Chen LX, Li P et al (2008) Gene expression is altered in piglet intestine by weaning and dietary glutamine supplementation. J Nutr 138:1025–1032

    PubMed  CAS  Google Scholar 

  • Wang XQ, Ou DY, Yin JD et al (2009a) Proteomic analysis reveals altered expression of proteins related to glutathione metabolism and apoptosis in the small intestine of zinc oxide-supplemented piglets. Amino Acids 37:209–218

    Article  PubMed  CAS  Google Scholar 

  • Wang WW, Qiao SY, Li DF (2009b) Amino acids and gut function. Amino Acids 37:105–110

    Article  PubMed  CAS  Google Scholar 

  • Wink DA, Mitchell JB (1998) Chemical biology of nitric oxide: Insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic Biol Med 25:434–456

    Article  PubMed  CAS  Google Scholar 

  • Wu G (1997) Synthesis of citrulline and arginine from proline in enterocytes of postnatal pigs. Am J Physiol Gastrointest Liver Physiol 272:G1382–G1390

    CAS  Google Scholar 

  • Wu G (1998) Intestinal mucosal amino acid catabolism. J Nutr 128:1249–1252

    PubMed  CAS  Google Scholar 

  • Wu G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37:1–17

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Knabe DA (1994) Free and protein-bound amino acids in sow’s colostrum and milk. J Nutr 124:2437–2444

    PubMed  CAS  Google Scholar 

  • Wu G, Meininger CJ (2002) Regulation of nitric oxide synthesis by dietary factors. Annu Rev Nutr 22:61–86

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Meininger CJ (2008) Analysis of citrulline, arginine, and methylarginines using high-performance liquid chromatography. Methods Enzymol 440:177–189

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Morris SM Jr (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336:1–17

    PubMed  CAS  Google Scholar 

  • Wu G, Knabe DA, Flynn NE et al (1996a) Arginine degradation in developing porcine enterocytes. Am J Physiol Gastrointest Liver Physiol 271:G913–G919

    CAS  Google Scholar 

  • Wu G, Meier SA, Knabe DA (1996b) Dietary glutamine supplementation prevents jejunal atrophy in weaned pigs. J Nutr 126:2578–2584

    PubMed  CAS  Google Scholar 

  • Wu G, Flynn NE, Knabe DA (2000a) Enhanced intestinal synthesis of polyamines from proline in cortisol-treated piglets. Am J Physiol Endocrinol Metab 279:E395–E402

    PubMed  CAS  Google Scholar 

  • Wu G, Flynn NE, Knabe DA et al (2000b) A cortisol surge mediates the enhanced polyamine synthesis in porcine enterocytes during weaning. Am J Physiol Regulatory Integrative Comp Physiol 279:R554–R559

    CAS  Google Scholar 

  • Wu G, Jaeger LA, Bazer FW et al (2004a) Arginine deficiency in preterm infants: biochemical mechanisms and nutritional implications. J Nutr Biochem 15:442–451

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Knabe DA, Kim SW (2004b) Arginine nutrition in neonatal pigs. J Nutr 134:2783S–2790S

    PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Davis TA (2007a) Important roles for the arginine family of amino acids in swine nutrition and production. Livest Sci 112:8–22

    Article  Google Scholar 

  • Wu G, Bazer FW, Cudd TA et al (2007b) Pharmacokinetics and safety of arginine supplementation in animals. J Nutr 137:1673S–1680S

    PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Davis TA et al (2009) Arginine metabolism and nutrition in growth, health and disease. Amino Acids 37:153–168

    Article  PubMed  CAS  Google Scholar 

  • Yao K, Yin YL, Chu W et al (2008) Dietary arginine supplementation increases mTOR signaling activity in skeletal muscle of neonatal pigs. J Nutr 138:867–872

    PubMed  CAS  Google Scholar 

  • Yin FG, Liu YL, Yin YL et al (2009a) Dietary supplementation with Astragalus polysaccharide enhances ileal digestibilities and serum concentrations of amino acids in early weaned piglets. Amino Acids 37:263–270

    Article  PubMed  CAS  Google Scholar 

  • Yin JD, Li XL, Li DF et al (2009b) Dietary supplementation with zinc oxide stimulates ghrelin secretion from the stomach of young pigs. J Nutr Biochem 20:783–790

    Article  PubMed  CAS  Google Scholar 

  • Yu H, Bao ED, Zhao RQ et al (2007) Effect of transportation stress on heat shock protein 70 concentration and mRNA expression in heart and kidney tissues and serum enzyme activities and hormone concentrations of pigs. Am J Vet Res 68:1145–1150

    Article  PubMed  CAS  Google Scholar 

  • Zhan Z, Ou D, Piao X et al (2008) Dietary arginine supplementation affects microvascular development in the small intestine of early-weaned pigs. J Nutr 138:1304–1309

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was jointly supported by grants from the Chinese Academy of Sciences and Knowledge Innovation Project (Kscx2-Yw-N-051), National 863 Program of China (2008AA10Z316), Research Program of State Key Laboratory of Food Science and Technology, Nanchang University (project No. SKLF-TS-200817), Ganjiang Scholars Program at Nanchang University, National Basic Research Program of China (2009CB118806), NSFC (30901040, 30901041, 30928018, 30828025, 30771558), National Fund of Agricultural Science and Technology outcome application (2006GB24910468), National Scientific and Technological Supporting Project (2006BAD12B02-5-2 and 2006BAD12B02-5-2), Hubei Chu Tian Scholars Program, National Research Initiative Competitive Grants from the Animal Growth & Nutrient Utilization Program (2008-35206-18764) of the USDA National Institute of Food and Agriculture, and Texas AgriLife Research (H-8200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulong Yin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, X., Ruan, Z., Gao, Y. et al. Dietary supplementation with l-arginine or N-carbamylglutamate enhances intestinal growth and heat shock protein-70 expression in weanling pigs fed a corn- and soybean meal-based diet. Amino Acids 39, 831–839 (2010). https://doi.org/10.1007/s00726-010-0538-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0538-y

Keywords

Navigation