Skip to main content

Advertisement

Log in

S100B: a multifunctional role in cardiovascular pathophysiology

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

S100B, a calcium-binding protein of the EF-hand type exerts both intracellular and extracellular functions. S100B is induced in the myocardium of human subjects and an experimental rat model following myocardial infarction. Forced expression of S100B in neonatal rat myocyte cultures, and high level expression of S100B in transgenic mice hearts and aortic smooth muscle cells inhibit cardiac hypertrophy and the associated phenotype, arterial smooth muscle proliferation, respectively, but demonstrate increased apoptosis following α1-adrenergic stimulation or myocardial infarction. Knocking out S100B, augmented hypertrophy, decreased apoptosis and preserved cardiac function following myocardial infarction. S100B induces apoptosis by an extracellular mechanism by interacting with the receptor for advanced glycation end products and activating ERK1/2 and p53 signaling. The intracellular, and extracellular, roles of S100B are attractive therapeutic targets for the treatment of both cardiac and vascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Anderson RE, Hansson LO, Vaage J (1999) Release of S100B during coronary artery bypass grafting is reduced by off-pump surgery. Ann Thorac Surg 67:1721–1725

    Article  PubMed  CAS  Google Scholar 

  • Baudier J, Cole RD (1988) Interactions between the microtubule-associated tau proteins and S100b regulate tau phosphorylation by the Ca2+/calmodulin-dependent protein kinase II. J Biol Chem 263:5876–5883

    PubMed  CAS  Google Scholar 

  • Becker T, Gerke V, Kube E, Weber K (1992) S100P, a novel Ca(2+)-binding protein from human placenta. cDNA cloning, recombinant protein expression and Ca2+ binding properties. Eur J Biochem 207:541–547

    Article  PubMed  CAS  Google Scholar 

  • Bierhaus A, Humpert PM, Morcos T, Wendt T, Chavakis T, Arnold B, Stern DM, Nawroth PP (2005) Understanding RAGE, the receptor for advanced glycation end products. J Mol Med 83:876–886

    Article  PubMed  CAS  Google Scholar 

  • Chien KR, Zhiu H, Knowlton KU, Miller-Hence W, van Bilsen M, O’Brien TX, Evans S (1993) Transcriptional regulation during cardiac growth and development. Annu Rev Physiol 55:77–95

    Article  PubMed  CAS  Google Scholar 

  • Delphin C, Ronjat M, Deloulme JC, Garin G, Debussche L, Higashimoto Y, Sakaguchi K, Baudier J (1999) Calcium-dependent interaction of S100B with the C-terminal domain of the tumor suppressor p53. J Biol Chem 274:10539–10544

    Article  PubMed  CAS  Google Scholar 

  • Donato R (1999) Functional roles of S100 proteins, calcium-binding proteins of the EF-hand type. Biochim Biophys Acta 1450:191–231

    Article  PubMed  CAS  Google Scholar 

  • Donato R (2001) S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int J Biochem Cell Biol 33:637–668

    Article  PubMed  CAS  Google Scholar 

  • Donato R (2003) Intracellular and extracellular roles of S100 proteins. Microsc Res Tech 60:540–551

    Article  PubMed  CAS  Google Scholar 

  • Donato R, Sorci G, Riuzzi F, Arcuri C, Bianchi R, Brozzi F, Tubaro C, Giambanco I (2009) S100B’s double life: intracellular regulator and extracellular signal. Intracellular and extracellular roles of S100 proteins. Biochim Biophys Acta 1793:1008–1022

    Article  PubMed  CAS  Google Scholar 

  • Emoto Y, Kobayashi R, Akatsuka H, Hidaka H (1992) Purification and characterization of a new member of the S-100 protein family from human placenta. Biochem Biophys Res Commun 182:1246–1253

    Article  PubMed  CAS  Google Scholar 

  • Frizzo JK, Tramontina F, Bortoli E, Gottfried C, Leal RB, Lengyel I, Donato R, Dunkley PR, Goncalves CA (2004) S100B-mediated inhibition of the phosphorylation of GFAP is prevented by TRTK-12. Neurochem Res 29:735–740

    Article  PubMed  CAS  Google Scholar 

  • Goncalves DS, Lenz G, Karl J, Goncalves CA, Rodnight R (2000) Extracellular S100B protein modulates ERK in astrocyte cultures. Neuroreport 11:807–809

    Article  PubMed  CAS  Google Scholar 

  • Griffin WS, Sheng JG, McKenzie JE, Royston MC, Gentleman SM, Brumback RA, Cork LC, Del Bigio MR, Roberts GW, Mrak RE (1998) Life-long overexpression of S100beta in Down’s syndrome: implications for Alzheimer pathogenesis. Neurobiol Aging 19:401–405

    Article  PubMed  CAS  Google Scholar 

  • Heizmann CW, Cox JA (1998) New perspectives on S100 proteins: a multi-functional Ca(2+)-, Zn(2+)- and Cu(2+)-binding protein family. Biometals 11:383–397

    Article  PubMed  CAS  Google Scholar 

  • Hu J, Van Eldik LJ (1996) S100 beta induces apoptotic cell death in cultured astrocytes via a nitric oxide-dependent pathway. Biochim Biophys Acta 1313:239–245

    Article  PubMed  Google Scholar 

  • Hu J, Van Eldik LJ (1999) Glial-derived proteins activate cultured astrocytes and enhance beta amyloid-induced glial activation. Brain Res 842:46–54

    Article  PubMed  CAS  Google Scholar 

  • Huttunen HJ, Kuja-Panula J, Sorci G, Agneletti AL, Donato R, Rauvala H (2000) Coregulation of neurite outgrowth and cell survival by amphoterin and S100 proteins through receptor for advanced glycation end products (RAGE) activation. J Biol Chem 275:40096–40105

    Article  PubMed  CAS  Google Scholar 

  • Ikura M (1996) Calcium binding and conformational response in EF-hand proteins. Trends Biochem Sci 21:14–17

    PubMed  CAS  Google Scholar 

  • Katz AM (1990) Is heart failure an abnormality of myocardial cell growth? Cardiology 77:346–356

    Article  PubMed  CAS  Google Scholar 

  • Kerkhoff C, Klempt M, Sorg C (1998) Novel insights into structure and function of MRP8 (S100A8) and MRP14 (S100A9). Biochim Biophys Acta 1448:200–211

    Article  PubMed  CAS  Google Scholar 

  • Kilby PM, Van Eldik LJ, Roberts GC (1997) Identification of the binding site on S100B protein for the actin capping protein CapZ. Protein Sci 6:2494–2503

    Article  PubMed  CAS  Google Scholar 

  • Kligman D, Marshak DR (1985) Purification and characterization of a neurite extension factor from bovine brain. Proc Natl Acad Sci USA 82:7136–7139

    Article  PubMed  CAS  Google Scholar 

  • Kursula P, Lehto VP, Heape AM (2000) S100beta inhibits the phosphorylation of the L-MAG cytoplasmic domain by PKA. Brain Res Mol Brain Res 76:407–410

    Article  PubMed  CAS  Google Scholar 

  • Leclerc E, Fritz G, Weibel M, Heizmann CW, Galichet A (2007) S100B and S100A6 differentially modulate cell survival by interacting with distinct RAGE immunoglobulin domains. J Biol Chem 282:31317–31331

    Article  PubMed  CAS  Google Scholar 

  • Markowitz J, Rustandi RR, Varney KM, Wilder PT, Udan R, Wu SL, Horrocks WD, Weber DJ (2005) Calcium-binding properties of wild-type and EF-hand mutants of S100B in the presence and absence of a peptide derived from the C-terminal negative regulatory domain of p53. Biochemistry 44:7305–7314

    Article  PubMed  CAS  Google Scholar 

  • Mazzini GS, Schaf DV, Vinade ER, Horowitz E, Bruch RS, Brunm LM, Goncalves CA, Bacal F, Souza DO, Portela LV, Bordignon S (2007) Increased S100B serum levels in dilated cardiomyopathy patients. J Card Fail 13:850–854

    Article  PubMed  CAS  Google Scholar 

  • Mbele GO, Deloulme JC, Gentil BJ, Delphin C, Ferro M, Garin J, Takahashi M, Baudier J (2002) The zinc- and calcium-binding S100B interacts and co-localizes with IQGAP1 during dynamic rearrangement of cell membranes. J Biol Chem 277:49998–50007

    Article  PubMed  CAS  Google Scholar 

  • Millward TA, Heizmann CW, Schafer BW, Hemmings BA (1998) Calcium regulation of Ndr protein kinase mediated by S100 calcium-binding proteins. EMBO J 17:5913–5922

    Article  PubMed  CAS  Google Scholar 

  • Morgan HE, Baker KM (1991) Cardiac hypertrophy: mechanical, neural and endocrine dependence. Circulation 83:13–25

    PubMed  CAS  Google Scholar 

  • Most P, Boerries M, Eicher C, Schweda C, Ehlermann P, Pleger ST, Loeffler E, Koch WJ, Katus HA, Schoenenberger CA, Remppis A (2003) Extracellular S100A1 protein inhibits apoptosis in ventricular cardiomyocytes via activation of the extracellular signal-regulated protein kinase ½ (ERK1/2). J Biol Chem 278:48404–48412

    Article  PubMed  CAS  Google Scholar 

  • Newton RA, Hogg N (1998) The human S100 protein MRP-14 is a novel activator of the beta 2 integrin Mac-1 on neutrophils. J Immunol 160:1427–1435

    PubMed  CAS  Google Scholar 

  • Parker TG (1993) Molecular biology of cardiac growth and hypertrophy. Herz 18:245–255

    PubMed  CAS  Google Scholar 

  • Parker TG, Schneider MD (1991) Growth factors, proto-oncogenes and plasticity of the cardiac phenotype. Annu Rev Physiol 53:179–200

    Article  PubMed  CAS  Google Scholar 

  • Peskind ER, Griffin WS, Akama KT, Raskind MA, Van Eldik LJ (2001) Cerebrospinal fluid S100B is elevated in the earlier stages of Alzheimer’s disease. Neurochem Int 39:409–413

    Article  PubMed  CAS  Google Scholar 

  • Portela LV, Brenol JC, Walz R, Bianchin M, Tort AB, Canabarro UP, Beheregaray S, Marasca JA, Xavier RM, Neto EC, Goncalves CA, Souza DO (2002) Serum S100B levels in patients with lupus erythematosus: preliminary observation. Clin Diagn Lab Immunol 9:164–166

    PubMed  Google Scholar 

  • Rempiss A, Greten T, Schafer BW, Hunziker P, Erne P, Katus HA, Heizmann CW (1996) Altered expression of the Ca(2+)-binding protein S100A1 in human cardiomyopathy. Biochim Biophys Acta 1313:253–257

    Article  Google Scholar 

  • Rustandi RR, Baldisseri DM, Weber DJ (2000) Structure of the negative regulatory domain of p53 bound to S100Bb. Nat Struct Biol 7:570–574

    Article  PubMed  CAS  Google Scholar 

  • Santamaria-Kisiel L, Rintala-Dempsey AC, Shaw GS (2006) Calcium-dependent and -independent interactions of the S100 protein family. Biochem J 396:201–214

    Article  PubMed  CAS  Google Scholar 

  • Schmidt AM, Yan SD, Yan SF, Stern DM (2001) The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses. J Clin Invest 108:949–955

    PubMed  CAS  Google Scholar 

  • Tsoporis JN, Marks A, Kahn HJ, Butany JW, Liu PP, O’Hanlon D, Parker TG (1997) S100B inhibits α1-adrenergic induction of the hypertrophic phenotype in cardiac myocytes. J Biol Chem 272:31915–31921

    Article  PubMed  CAS  Google Scholar 

  • Tsoporis JN, Marks A, Kahn HJ, Butany JW, Liu PP, O’Hanlon D, Parker TG (1998) Inhibition of norepinephrine-induced cardiac hypertrophy in S100beta transgenic mice. J Clin Invest 102:1609–1616

    Article  PubMed  CAS  Google Scholar 

  • Tsoporis JN, Marks A, Van Eldik LJ, O’Hanlon D, Parker TG (2003a) Regulation of the S100B gene by α1-adrenergic stimulation in cardiac myocytes. Am J Physiol 284:H193–H203

    CAS  Google Scholar 

  • Tsoporis JN, Marks A, Zimmer DB, McMahon C, Parker TG (2003b) The myocardial protein S100A1, plays a role in the maintenance of normal gene expression in the adult heart. Mol Cell Biochem 242:27–33

    Article  PubMed  CAS  Google Scholar 

  • Tsoporis JN, Marks A, Haddad A, Dawood F, Liu PP, Parker TG (2005) S100B expression modulates left ventricular remodeling after myocardial infarction in mice. Circulation 111:598–606

    Article  PubMed  CAS  Google Scholar 

  • Tsoporis JN, Overgaard CB, Izhar S, Parker TG (2009) S100B modulates the hemodynamic response to norepinephrine stimulation. Am J Hypertens 22:1048–1053

    Article  PubMed  CAS  Google Scholar 

  • Tsoporis JN, Izhar S, Leong-Poi H, Desjardins J-F, Huttunen HJ, Parker TG (2010) S100B interaction with the receptor for advanced glycation end products (RAGE). A novel receptor-mediated mechanism for myocyte apoptosis postinfarction. Circ Res 106 (in press)

  • Van Eldik LJ, Griffin WS (1994) S100 beta expression in Alzheimer’s disease: relation to neuropathology in brain regions. Biochim Biophys Acta 1223:398–403

    Article  PubMed  Google Scholar 

  • Van Eldik LJ, Zimmer DB (1987) Secretion of S-100 from rat C6 glioma cells. Brain Res 436:367–370

    Article  PubMed  Google Scholar 

  • Zimmer DB, Dubuisson JG (1993) Identification of an S100 target protein: glycogen phosphorylase. Cell Calcium 14:323–332

    Article  PubMed  CAS  Google Scholar 

  • Zimmer DB, Cornwall EH, Landar A, Song W (1995) The S100 protein family: history, function and expression. Brain Res Bull 37:417–429

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas G. Parker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsoporis, J.N., Mohammadzadeh, F. & Parker, T.G. S100B: a multifunctional role in cardiovascular pathophysiology. Amino Acids 41, 843–847 (2011). https://doi.org/10.1007/s00726-010-0527-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0527-1

Keywords

Navigation