Skip to main content
Log in

Novel antimicrobial peptides from the venom of the eusocial bee Halictus sexcinctus (Hymenoptera: Halictidae) and their analogs

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Two novel antimicrobial peptides, named halictines, were isolated from the venom of the eusocial bee Halictus sexcinctus. Their primary sequences were established by ESI-QTOF mass spectrometry, Edman degradation and enzymatic digestion as Gly-Met-Trp-Ser-Lys-Ile-Leu-Gly-His-Leu-Ile-Arg-NH2 (HAL-1), and Gly-Lys-Trp-Met-Ser-Leu-Leu-Lys–His-Ile-Leu-Lys-NH2 (HAL-2). Both peptides exhibited potent antimicrobial activity against Gram-positive and Gram-negative bacteria but also noticeable hemolytic activity. The CD spectra of HAL-1 and HAL-2 measured in the presence of trifluoroethanol or SDS showed ability to form an amphipathic α-helical secondary structure in an anisotropic environment such as bacterial cell membrane. NMR spectra of HAL-1 and HAL-2 measured in trifluoroethanol/water confirmed formation of helical conformation in both peptides with a slightly higher helical propensity in HAL-1. Altogether, we prepared 51 of HAL-1 and HAL-2 analogs to study the effect of such structural parameters as cationicity, hydrophobicity, α-helicity, amphipathicity, and truncation on antimicrobial and hemolytic activities. The potentially most promising analogs in both series are those with increased net positive charge, in which the suitable amino acid residues were replaced by Lys. This improvement basically relates to the increase of antimicrobial activity against pathogenic Pseudomonas aeruginosa and to the mitigation of hemolytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ajesh K, Sreejith K (2009) Peptide antibiotics: an alternative and effective antimicrobial strategy to circumvent fungal infections. Peptides 30:999–1006

    Article  CAS  PubMed  Google Scholar 

  • Backlund B-M, Wikander G, Peeters T, Graslund A (1994) Induction of secondary structure in the peptide hormone motilin by interaction with phospholipid vesicles. Biochim Biophys Acta 1190:337–344

    Article  CAS  PubMed  Google Scholar 

  • Billeter M, Braun W, Wuthrich K (1982) Sequential resonance assignments in protein 1H nuclear magnetic resonance spectra. Computation of sterically allowed proton-proton distance and statistical analysis of proton-proton distance in single crystal protein conformations. J Mol Biol 155:321–346

    Article  CAS  PubMed  Google Scholar 

  • Biswas KM, DeVido DR, Dorsey JG (2003) Evaluation of methods for measuring amino acid hydrophobicities and interactions. J Chromatogr A 1000:637–655

    Article  CAS  PubMed  Google Scholar 

  • Bütner K, Blondelle SE, Ostresh JM, Houghten RA (1992) Perturbation of peptide conformations induced in anisotropic environments. Biopolymers 32:575–583

    Article  Google Scholar 

  • Čeřovský V, Hovorka O, Cvačka J, Voburka Z, Bednárová L, Borovičková L, Slaninová J, Fučík V (2008a) Melectin: a novel antimicrobial peptide from the venom of the cleptoparasitic bee Melecta albifrons. ChemBioChem 9:2815–2821

    Article  PubMed  CAS  Google Scholar 

  • Čeřovský V, Slaninová J, Fučík V, Hulačová H, Borovičková L, Ježek R, Bednárová L (2008b) New potent antimicrobial peptides from the venom of Polistinae wasps and their analogs. Peptides 29:992–1003

    Article  PubMed  CAS  Google Scholar 

  • Čeřovský V, Buděšínský M, Hovorka O, Cvačka J, Voburka Z, Slaninová J, Borovičková L, Fučík V, Bednárová L, Votruba I, Straka J (2009) Lasioglossins: three novel antimicrobial peptides from the venom of the eusocial bee Lasioglossum laticeps (Hymenoptera: Halictidae). ChemBioChem 10:2089–2099

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Mant CT, Farmer SW, Hancock REW, Vasil ML, Hodges RS (2005) Rational design of α-helical antimicrobial peptides with enhanced activities and specificity/therapeutic index. J Biol Chem 280:12316–12329

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Guarnieri MT, Vasil AI, Vasil ML, Mant CT, Hodges RS (2007) Role of peptide hydrophobicity in the mechanism of action of α-helical antimicrobial peptides. Antimicrob Agents Chemother 51:1398–1406

    Article  CAS  PubMed  Google Scholar 

  • Conlon JM, Al-Ghaferi N, Abraham B, Leprince J (2007) Strategies for transformation of naturally-occurring amphibian antimicrobial peptides into therapeutically valuable anti-infective agents. Methods 42:349–357

    Article  CAS  PubMed  Google Scholar 

  • Cornut I, Büttner K, Dasseux J-L, Dufourcq J (1994) The amphipathic α-helical concept. Application to the de novo design of ideally amphipathic Leu, Lys peptides with hemolytic activity higher than that of melittin. FEBS Lett 349:29–33

    Article  CAS  PubMed  Google Scholar 

  • Dennison SR, Wallace J, Harris F, Phoenix DA (2005) Amphiphilic α-helical antimicrobial peptides and their structure/function relationships. Prot Pept Lett 12:31–39

    Article  CAS  Google Scholar 

  • Dennison SR, Whittaker M, Hartus F, Phoenix DA (2006) Anticancer α-helical peptides and structure/function relationships underpinning their interactions with tumor cell membranes. Curr Protein Peptide Sci 7:487–499

    Article  CAS  Google Scholar 

  • Eisenberg D, Schwarz E, Komaromy M, Wall R (1984) Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J Mol Biol 179:125–142

    Article  CAS  PubMed  Google Scholar 

  • Giuliani A, Pirri G, Nicoletto SF (2007) Antimicrobial peptides: an overview of a promising class of therapeutics. Cent Eur J Biol 2:1–33

    Article  CAS  Google Scholar 

  • Gordon YJ, Romanowski EG, McDermott AM (2005) A review of antimicrobial peptides and their therapeutical potential as anti-infective drugs. Curr Eye Res 30:505–515

    Article  CAS  PubMed  Google Scholar 

  • Hultmark D, Steiner H, Rasmuson T, Boman HG (1980) Insect immunity. Purification and properties of three inducible bacterial proteins from haemolymph of immunized pupae of Hyalophora cecropia. Eur J Biochem 106:7–16

    Article  CAS  PubMed  Google Scholar 

  • Jiang Z, Vasil AI, Hale JD, Hancock REW, Vasil ML, Hodges RS (2008) Effect of net charge and the number of positively charged residues on the biological activity of amphipathic α-helical cationic antimicrobial peptides. Biopolymers (Peptide Science) 90:369–383

    Article  CAS  Google Scholar 

  • Konno K, Hisada M, Fontana R, Lorenzi CCB, Naoki H, Itagaki Y, Miwa A, Kawai N, Nakata Y, Yasuhara T, Neto JR, de Azevedo WF Jr, Palma MS, Nakajima T (2001) Anoplin, a novel antimicrobial peptide from the venom of the solitary wasp Anoplius samariensis. Biochim Biophys Acta 1550:70–80

    CAS  PubMed  Google Scholar 

  • Konno K, Hisada M, Naoki H, Itagaki Y, Fontana R, Rangel M, Oliveira JS, Cabrera MPS, Neto JR, Hide I, Nakata Y, Yasuhara T, Nakajima T (2006) Eumenitin, a novel antimicrobial peptide from the venom of the solitary eumenine wasp Eumenes rubronotatus. Peptides 27:2624–2631

    Article  CAS  PubMed  Google Scholar 

  • Konno K, Rangel M, Oliveira JS, dos Santos Cabrera MP, Fontana R, Hirata IY, Hide I, Nakata Y, Mori K, Kawano M, Fuchino H, Sekita S, Neto JR (2007) Decoralin, a novel linear cationic α-helical peptide from the venom of the solitary eumenine wasps Oreumenes decoratus. Peptides 28:2320–2327

    Article  CAS  PubMed  Google Scholar 

  • Kuhn-Nentwig L (2003) Antimicrobial and cytolytic peptides of venomous arthropods. Cell Mol Life Sci 60:2651–2668

    Article  CAS  PubMed  Google Scholar 

  • Kuntz ID, Kosen PA, Craig EC (1991) Amide chemical shifts in many helices in peptides and protein are periodic. J Am Chem Soc 113:1406–1408

    Article  CAS  Google Scholar 

  • Lequin O, Ladram A, Chabbert L, Bruston F, Convert O, Vanhoye D, Chassaing G, Nicolas P, Amiche M (2006) Dermaseptin S9, an alpha/helical antimicrobial peptide with a hydrophobic core and cationic termini. Biochemistry 45:468–480

    Article  CAS  PubMed  Google Scholar 

  • Merutka G, Dyson HJ, Wright PE (1995) “Random coil” 1H chemical shifts obtained as a function of temperature and trifluoroethanol concentration for the peptide series GGXGG. J Biomol NMR 5:14–24

    Article  CAS  PubMed  Google Scholar 

  • Monincová L, Slaninová J, Voburka Z, Hovorka O, Fučík V, Borovičková L, Bednárová L, Buděšínský M, Straka J, Čeřovský V (2009) Novel biologically active peptides from the venom of the solitary bee Macropis fulvipes (Hymenoptera: Melittidae). In: Slaninová J (ed) Collection symposium series, vol 11, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague 2009, pp 77–80

  • Oren Z, Shai Y (1997) Selective lysis of bacteria but not mammalian cells by dia-stereoisomers of mellitin: structure function study. Biochemistry 36:1826–1835

    Article  CAS  PubMed  Google Scholar 

  • Oren Z, Shai Y (1998) Mode of action of linear amphipathic α-helical antimicrobial peptides. Biopolymers 47:451–463

    Article  CAS  PubMed  Google Scholar 

  • Parisien A, Allain B, Zhang J, Mandeville R, Lan CQ (2008) Novel alternatives to antibiotics: bacteriophages, bacterial cell wall hydrolases, and antimicrobial peptides. J Appl Microb 104:1–13

    CAS  Google Scholar 

  • Pathak N, Salas-Auvert R, Ruche G, Janna M-H, McCarthy D, Harrison RG (1995) Comparison of the effect of hydrophobicity, amphiphilicity, and α-helicity on the activities of antimicrobial peptides. Proteins Struct Funct Genet 22:182–186

    Article  CAS  PubMed  Google Scholar 

  • Peschel A, Collins LV (2001) Staphylococcal resistance to antimicrobial peptides of mammalian and bacterial origin. Peptides 22:1651–1659

    Article  CAS  PubMed  Google Scholar 

  • Rivas L, Luque-Ortega JR, Andreu D (2009) Amphibian antimicrobial peptides and protozoa: lessons from parasites. Biochim Biophys Acta 1788:1570–1581

    Article  CAS  PubMed  Google Scholar 

  • Rohl CA, Baldwin RL (1998) Deciphering rules of helix stability in peptides. Methods Enzymol 295:1–26

    Article  CAS  PubMed  Google Scholar 

  • Schiffer M, Edmundson AB (1967) Use of helical wheels to represent the structures of proteins and to identify segments with helical potential. Biophys J 7:121–135

    Article  CAS  PubMed  Google Scholar 

  • Selsted ME, Novotny MJ, Morris WL, Tang YQ, Smith W, Cullor JS (1992) Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. J Biol Chem 267:4292–4295

    CAS  PubMed  Google Scholar 

  • Shin SY, Lee S-H, Yang S-T, Park EJ, Lee DG, Lee MK, Eom SH, Song WK, Kim Y, Hahm K-S, Kim JI (2001) Antibacterial, antitumor and hemolytic activities of α-helical antibiotic peptide, P18 and its analogs. J Peptide Res 58:504–514

    Article  CAS  Google Scholar 

  • Sieprawska-Lupa M, Mydel P, Krawczyk K, Wojcik K, Puklo M, Lupa B, Suder P, Silberring J, Reed M, Pohl J, Shafer W, McAleese F, Foster T, Travis J, Potempa J (2004) Degradation of human antimicrobial peptide LL-37 by Staphylococcus aureus-derived proteinases. Antimicrob Agents Chemother 48:4673–4679

    Article  CAS  PubMed  Google Scholar 

  • Souza BM, Mendes MA, Santos LD, Marques MR, César LMM, Almeida RNA, Pagnocca FC, Konno K, Palma MS (2005) Structural and functional characterization of two novel peptide toxins isolated from the venom of the social wasp Polybia paulista. Peptides 26:2157–2164

    Article  CAS  PubMed  Google Scholar 

  • Suh J-Y, Lee K-H, Chi S-W, Hong S-Y, Choi B-W, Moon H-M, Choi B-S (1996) Unusually stable helical kink in the antimicrobial peptide—a derivative of gaegurin. FEBS Lett 392:309–312

    Article  CAS  PubMed  Google Scholar 

  • Suh J-Y, Lee Y-T, Park C-B, Lee K-H, Kim S-C, Choi B-S (1999) Structural and functional implications of a proline residue in the antimicrobial peptide gaegurin. Eur J Biochem 266:665–674

    Article  CAS  PubMed  Google Scholar 

  • Toke O (2005) Antimicrobial peptides: new candidates in the fight against bacterial infection. Biopolymers (Peptide Science) 80:717–735

    Article  CAS  Google Scholar 

  • Tossi A, Sandri L, Giangaspero A (2000) Amphipathic, α-helical antimicrobial peptides. Biopolymers (Peptide Science) 55:4–30

    Article  CAS  Google Scholar 

  • Wang G, Li X, Wang Z (2009) APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res 37:D933–D937

    Article  CAS  PubMed  Google Scholar 

  • Wechselberger C (1998) Cloning of cDNA encoding new peptides of the dermaseptin-family. Biochim Biophys Acta 1388:279–283

    CAS  PubMed  Google Scholar 

  • Wieprecht T, Dathe M, Krause M, Beyermann M, Maloy WL, MacDonnald DL, Bienert M (1997) Modulation of membrane activity of amphipathic, antimicrobial peptides by slight modification of hydrophobic moment. FEBS Lett 417:135–140

    Article  CAS  PubMed  Google Scholar 

  • Wishart DS, Nip AM (1998) Protein chemical shift analysis: a practical guide. Biochem Cell Biol 76:153–163

    Article  CAS  PubMed  Google Scholar 

  • Wishart DS, Sykes BD (1994) Chemical shifts as a tool for structure determination. Methods Enzymol 239:363–392

    Article  CAS  PubMed  Google Scholar 

  • Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharm Rev 55:27–55

    Article  CAS  PubMed  Google Scholar 

  • Zaiou M (2007) Multifunctional antimicrobial peptides: therapeutic targets in several human diseases. J Mol Med 85:317–329

    Article  CAS  PubMed  Google Scholar 

  • Zhou NE, Zhu B, Sykes BD, Hodges RS (1992) Relationship between amide proton chemical shifts and hydrogen bonding in amphipathic α-helical peptides. J Am Chem Soc 114:4320–4326

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Czech Science Foundation, Grant No. 203/08/0536, and by research project no. Z40550506 of the Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic. We thank our technical assistants Mrs. Hana Hulačová and Mrs. Jitka Čermáková for the help with peptide synthesis. We also thank Gale A. Kirking at English Editorial Services, S. R .O. for assistance with the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Václav Čeřovský.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 7745 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monincová, L., Buděšínský, M., Slaninová, J. et al. Novel antimicrobial peptides from the venom of the eusocial bee Halictus sexcinctus (Hymenoptera: Halictidae) and their analogs. Amino Acids 39, 763–775 (2010). https://doi.org/10.1007/s00726-010-0519-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0519-1

Keywords

Navigation