Skip to main content
Log in

Thiol dioxygenases: unique families of cupin proteins

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Proteins in the cupin superfamily have a wide range of biological functions in archaea, bacteria and eukaryotes. Although proteins in the cupin superfamily show very low overall sequence similarity, they all contain two short but partially conserved cupin sequence motifs separated by a less conserved intermotif region that varies both in length and amino acid sequence. Furthermore, these proteins all share a common architecture described as a six-stranded β-barrel core, and this canonical cupin or “jelly roll” β-barrel is formed with cupin motif 1, the intermotif region, and cupin motif 2 each forming two of the core six β-strands in the folded protein structure. The recently obtained crystal structures of cysteine dioxygenase (CDO), with contains conserved cupin motifs, show that it has the predicted canonical cupin β-barrel fold. Although there had been no reports of CDO activity in prokaryotes, we identified a number of bacterial cupin proteins of unknown function that share low similarity with mammalian CDO and that conserve many residues in the active-site pocket of CDO. Putative bacterial CDOs predicted to have CDO activity were shown to have similar substrate specificity and kinetic parameters as eukaryotic CDOs. Information gleaned from crystal structures of mammalian CDO along with sequence information for homologs shown to have CDO activity facilitated the identification of a CDO family fingerprint motif. One key feature of the CDO fingerprint motif is that the canonical metal-binding glutamate residue in cupin motif 1 is replaced by a cysteine (in mammalian CDOs) or by a glycine (bacterial CDOs). The recent report that some putative bacterial CDO homologs are actually 3-mercaptopropionate dioxygenases suggests that the CDO family may include proteins with specificities for other thiol substrates. A paralog of CDO in mammals was also identified and shown to be the other mammalian thiol dioxygenase, cysteamine dioxygenase (ADO). A tentative fingerprint motif for ADOs, or DUF1637 family members, is proposed. In ADOs, the conserved glutamate residue in cupin motif 1 is replaced by either glycine or valine. Both ADOs and CDOs appear to represent unique clades within the cupin superfamily.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ADO:

Cysteamine dioxygenase, or 2-aminoethanethiol dioxygenase

CDO:

Cysteine dioxygenase

References

  • Aluri S, de Visser SP (2007) The mechanism of cysteine oxygenation by cysteine dioxygenase enzymes. J Am Chem Soc 129:14846–14847

    Article  PubMed  CAS  Google Scholar 

  • Anand R, Dorrestein PC, Kinsland C, Begley TP, Ealick SE (2002) Structure of oxalate decarboxylase from Bacillus subtilis at 1.75 A resolution. Biochemistry 41:7659–7669

    Article  PubMed  CAS  Google Scholar 

  • Bruland N, Wübbeler JH, Steinbüchel A (2009) 3-mercaptopropionate dioxygenase, a cysteine dioxygenase homologue, catalyzes the initial step of 3-mercaptopropionate catabolism in the 3,3-thiodipropionic acid-degrading bacterium Variovorax paradoxus. J Biol Chem 284:660–672

    Article  PubMed  CAS  Google Scholar 

  • Cavallini D, Scandurra R, Demarco C (1963) The enzymatic oxidation of cysteamine to hypotaurine in the presence of sulfide. J Biol Chem 238:2999–3005

    PubMed  CAS  Google Scholar 

  • Cavallini D, Federici G, Ricci G, Dupre S, Antonucci A (1975) The specificity of cysteamine oxygenase. FEBS Lett 56:348–351

    Article  PubMed  CAS  Google Scholar 

  • Chen CJ, Lin YH, Huang YC, Liu MY (2006) Crystal structure of rubredoxin from Desulfovibrio gigas to ultra-high 0.68 Å resolution. Biochem Biophys Res Commun 349:79–90

    Article  PubMed  CAS  Google Scholar 

  • Dominy JE Jr, Simmons CR, Karplus PA, Gehring AM, Stipanuk MH (2006) Identification and characterization of bacterial cysteine dioxygenases: a new route of cysteine degradation for eubacteria. J Bacteriol 188:5561–5569

    Article  PubMed  CAS  Google Scholar 

  • Dominy JE Jr, Simmons CR, Hirschberger LL, Hwang J, Coloso RM, Stipanuk MH (2007) Discovery and characterization of a second mammalian thiol dioxygenase, cysteamine dioxygenase. J Biol Chem 282:25189–25198

    Article  PubMed  CAS  Google Scholar 

  • Dominy JE Jr, Hwang J, Guo S, Hirschberger LL, Zhang S, Stipanuk MH (2008) Synthesis of amino acid cofactor in cysteine dioxygenase is regulated by substrate and represents a novel post-translational regulation of activity. J Biol Chem 283:12188–12201

    Article  PubMed  CAS  Google Scholar 

  • Dunwell JM, Khuri S, Gane PJ (2000) Microbial relatives of the seed storage proteins of higher plants: conservation of structure and diversification of function during evolution of the cupin superfamily. Microbiol Mol Biol Rev 64:153–179

    Article  PubMed  CAS  Google Scholar 

  • Dunwell JM, Culham A, Carter CE, Sosa-Aguirre CR, Goodenough PW (2001) Evolution of functional diversity in the cupin superfamily. Trends Biochem Sci 26:740–746

    Article  PubMed  CAS  Google Scholar 

  • Fusetti F, Schroter KH, Steiner RA, van Noort PI, Pijning T, Rozeboom HJ, Kalk KH, Egmond MR, Dijkstra BW (2002) Crystal structure of the copper-containing quercetin 2,3-dioxygenase from Aspergillus japonicus. Structure (Camb) 10:259–268

    Article  CAS  Google Scholar 

  • Hirschberger LL, Daval S, Stover PJ, Stipanuk MH (2001) Murine cysteine dioxygenase gene: structural organization, tissue-specific expression and promoter identification. Gene 277:153–161

    Article  PubMed  CAS  Google Scholar 

  • Hosokawa Y, Matsumoto A, Oka J, Itakura H, Yamaguchi K (1990) Isolation and characterization of a cDNA for rat liver cysteine dioxygenase. Biochem Biophys Res Commun 168:473–478

    Article  PubMed  CAS  Google Scholar 

  • Ito N, Phillips SE, Stevens C, Ogel ZB, McPherson MJ, Keen JN, Yadav KD, Knowles PF (1991) Novel thioether bond revealed by a 1.7 A crystal structure of galactose oxidase. Nature 350:87–90

    Article  PubMed  CAS  Google Scholar 

  • Jaroszewski L, Schwarzenbacher R, von Delft F, McMullan D, Brinen LS, Canaves JM, Dai X, Deacon AM, DiDonato M, Elsliger MA, Eshagi S, Floyd R, Godzik A, Grittini C, Grzechnik SK, Hampton E, Levin I, Karlak C, Klock HE, Koesema E, Kovarik JS, Kreusch A, Kuhn P, Lesley SA, McPhillips TM, Miller MD, Morse, Moy K, Ouyang J, Page R, Quijano K, Reyes R, Rezezadeh F, Robb A, Sims E, Spraggon G, Stevens RC, van den Bedem H, Velasquez J, Vincent J, Wang X, West B, Wolf G, Xu Q, Hodgson KO, Wooley J, Wilson IA (2004) Crystal structure of a novel manganese-containing cupin (TM1459) from Thermotoga maritima at 1.65 A resolution. Proteins 56:611–614

  • Kleffmann T, Jongkees SA, Fairweather G, Wilbanks SM, Jameson GNJ (2009) Mass-spectrometric characterization of two posttranslational modifications of cysteine dioxygenase. Biol Inorg Chem 14:913–921

    Article  CAS  Google Scholar 

  • Ko TP, Day J, McPherson A (2000) The refined structure of canavalin from jack bean in two crystal forms at 2.1 and 2.0 A resolution. Acta Crystallogr D Biol Crystallogr 56(Pt 4):411–420

    Article  PubMed  CAS  Google Scholar 

  • Lawrence MC, Izard T, Beuchat M, Blagrove RJ, Colman PM (1994) Structure of phaseolin at 2.2 A resolution. Implications for a common vicilin/legumin structure and the genetic engineering of seed storage proteins. J Mol Biol 238:748–776

    Article  PubMed  CAS  Google Scholar 

  • McCann KP, Akbari MT, Williams AC, Ramsden DB (1994) Human cysteine dioxygenase type I: primary structure derived from base sequencing of cDNA. Biochim Biophys Acta 1209:107–110

    Article  PubMed  CAS  Google Scholar 

  • McCoy JG, Bailey LJ, Bitto E, Bingman CA, Aceti DJ, Fox BG, Phillips GN Jr (2006) Structure and mechanism of mouse cysteine dioxygenase. Proc Natl Acad Sci USA 103:3084–3089

    Article  PubMed  CAS  Google Scholar 

  • Pierce BS, Gardner JD, Bailey LJ, Brunold TC, Fox BG (2007) Characterization of the nitrosyl adduct of substrate-bound mouse cysteine dioxygenase by electron paramagnetic resonance: electronic structure of the active site and mechanistic iimplications. Biochemistry 46:8569–8578

    Article  PubMed  CAS  Google Scholar 

  • Richerson RB, Ziegler DM (1987) Cysteamine dioxygenase. Methods Enzymol 143:410–415

    Article  PubMed  CAS  Google Scholar 

  • Rogers MS, Baron AJ, McPherson MJ, Knowles PF, Dooley DM (2000) Galactose oxidase pro-sequence cleavage and cofactor assembly are self-processing reactions. J Am Chem Soc 122:990–991

    Article  CAS  Google Scholar 

  • Rogers MS, Hurtado-Guerrero R, Firbank SJ, Halcrow MA, Dooley DM, Phillips SE, Knowles PF, McPherson MJ (2008) Cross-link formation of the cysteine 228-tyrosine 272 catalytic cofactor of galactose oxidase does not require dioxygen. Biochemistry 47:10428–10439

    Article  PubMed  CAS  Google Scholar 

  • Rossmann MG, Abad-Zapatero C, Murthy MR, Liljas L, Jones TA, Strandberg B (1983) Structural comparisons of some small spherical plant viruses. J Mol Biol 165:711–736

    Article  PubMed  CAS  Google Scholar 

  • Sakakibara S, Yamaguchi K, Hosokawa Y, Kohashi N, Ueda I (1976) Purification and some properties of rat liver cysteine oxidase (cysteine dioxygenase). Biochim Biophys Acta 422:273–279

    PubMed  CAS  Google Scholar 

  • Schnell R, Sandalova T, Hellman U, Lindqvist Y, Schneider G (2005) Siroheme- and [Fe4–S4]-dependent NirA from Mycobacterium tuberculosis is a sulfite reductase with a covalent Cys-Tyr bond in the active site. J Biol Chem 280:27319–27328

    Article  PubMed  CAS  Google Scholar 

  • Simmons CR, Hirschberger LL, Machi MS, Stipanuk MH (2006a) Expression, purification, and kinetic characterization of recombinant rat cysteine dioxygenase, a non-heme metalloenzyme necessary for regulation of cellular cysteine levels. Protein Expr Purif 47:74–81

    Article  PubMed  CAS  Google Scholar 

  • Simmons CR, Liu Q, Huang Q, Hao Q, Begley TP, Karplus PA, Stipanuk MH (2006b) Crystal structure of mammalian cysteine dioxygenase. A novel mononuclear iron center for cysteine thiol oxidation. J Biol Chem 281:18723–18733

    Article  PubMed  CAS  Google Scholar 

  • Simmons CR, Krishnamoorthy K, Granett SL, Schuller DJ, Dominy JE Jr, Begley TP, Stipanuk MH, Karplus PA (2008) An Fe2+-bound persulfenate intermediate in cysteine dioxyenase. Biochemistry 47:11390–11392

    Article  PubMed  CAS  Google Scholar 

  • Stipanuk MH (1986) Metabolism of sulfur-containing amino acids. Annu Rev Nutr 6:179–209

    Article  PubMed  CAS  Google Scholar 

  • Stipanuk MH (2004) Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine. Annu Rev Nutr 24:539–577

    Article  PubMed  CAS  Google Scholar 

  • Stipanuk MH, Londono M, Lee JI, Hu M, Yu AF (2002) Enzymes and metabolites of cysteine metabolism in nonhepatic tissues of rats show little response to changes in dietary protein or sulfur amino acid levels. J Nutr 132:3369–3378

    PubMed  CAS  Google Scholar 

  • Stipanuk MH, Londono M, Hirschberger LL, Hickey C, Thiel DJ, Wang L (2004) Evidence for expression of a single distinct form of mammalian cysteine dioxygenase. Amino Acids 26:99–106

    Article  PubMed  CAS  Google Scholar 

  • Stipanuk MH, Ueki I, Dominy JE Jr, Simmons CR, Hirschberger LL (2009) Cysteine dioxygenase: a robust system for regulation of cellular cysteine levels. Amino Acids 37:55–63

    Article  PubMed  CAS  Google Scholar 

  • Tanner A, Bowater L, Fairhurst SA, Bornemann S (2001) Oxalate decarboxylase requires manganese and dioxygen for activity. Overexpression and characterization of Bacillus subtilis YvrK and YoaN. J Biol Chem 276:43627–43634

    Article  PubMed  CAS  Google Scholar 

  • Whittaker MM, Whittaker JW (2003) Cu(I)-dependent biogenesis of the galactose oxidase redox cofactor. J Biol Chem 278:22090–22101

    Article  PubMed  CAS  Google Scholar 

  • Whittaker MM, Kersten PJ, Nakamura N, Sanders-Loehr J, Schweizer ES, Whittaker JW (1996) Glyoxal oxidase from Phanerochaete chrysosporium is a new radical-copper oxidase. J Biol Chem 271:681–687

    Article  PubMed  CAS  Google Scholar 

  • Whittaker MM, Kersten PJ, Cullen D, Whittaker JW (1999) Identification of catalytic residues in glyoxal oxidase by targeted mutagenesis. J Biol Chem 274:36226–36232

    Article  PubMed  CAS  Google Scholar 

  • Woo EJ, Dunwell JM, Goodenough PW, Marvier AC, Pickersgill RW (2000) Germin is a manganese containing homohexamer with oxalate oxidase and superoxide dismutase activities. Nat Struct Biol 7:1036–1040

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi K, Hosokawa Y, Kohashi N, Kori Y, Sakakibara S, Ueda I (1978) Rat liver cysteine dioxygenase (cysteine oxidase). Further purification, characterization, and analysis of the activation and inactivation. J Biochem (Tokyo) 83:479–491

    CAS  Google Scholar 

  • Ye S, Wu X, Wei L, Tang D, Sun P, Bartlam M, Rao Z (2007) An insight into the mechanism of human cysteine dioxygenase. Key roles of the thioether-bonded tyrosine-cysteine cofactor. J Biol Chem 282:3391–3402

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Colabroy KL, Begley TP, Ealick SE (2005) Structural studies on 3-hydroxyanthranilate-3, 4-dioxygenase: the catalytic mechanism of a complex oxidation involved in NAD biosynthesis. Biochemistry 44:7632–7643

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institute of Diabetes and Digestive and Kidney Diseases through Public Health Service Grant # DK056649 (to M HS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martha H. Stipanuk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stipanuk, M.H., Simmons, C.R., Andrew Karplus, P. et al. Thiol dioxygenases: unique families of cupin proteins. Amino Acids 41, 91–102 (2011). https://doi.org/10.1007/s00726-010-0518-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0518-2

Keywords

Navigation