Skip to main content

Advertisement

Log in

Peptide-based molecular beacons for cancer imaging and therapy

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Peptide-based molecular beacons are Förster resonance energy transfer-based target-activatable probes. They offer control of fluorescence emission in response to specific cancer targets and thus are useful tools for in vivo cancer imaging. With our increasing knowledge about human genome in health and disease, peptide-based “smart” probes are continually developed for in vivo optical imaging of specific molecular targets, biological pathways and cancer progression and diagnosis. A class of fluorescent photosensitizers further extends the application of peptide beacons to cancer therapeutics. This review highlights the applications of peptide beacons in cancer imaging, the simultaneous treatment and response monitoring and smart therapeutics with a focus on recent improvements in the design of these probes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bremer C (2008) Optical Methods. Handb Exp Pharmacol 185(Pt 2):3–12

    Article  PubMed  CAS  Google Scholar 

  • Bremer C, Tung CH, Weissleder R (2001) Optical methods. Nat Med 7(6):743–748

    Article  PubMed  CAS  Google Scholar 

  • Bullok K, Piwnica-Worms D (2005) Synthesis and characterization of a small, membrane-permeant, caspase-activatable far-red fluorescent peptide for imaging apoptosis. J Med Chem 48:5404–5407

    Article  PubMed  CAS  Google Scholar 

  • Campo MA, Gabriel D, Kucera P, Gurny R, Lange N (2007) Polymeric photosensitizer prodrugs for photodynamic therapy. Photochem Photobiol 83:958–965

    Article  PubMed  CAS  Google Scholar 

  • Carmel A, Zur M, Yaron A, Katchalski E (1973) Use of substrates with fluorescent donor and acceptor chromophores for the kinetic assay of hydrolases. FEBS Lett 30:11–14

    Article  PubMed  CAS  Google Scholar 

  • Chance B (1998) Near-infrared images using continuous, phase-modulated, and pulsed light with quantitation of blood and blood oxygenation. Ann N Y Acad Sci 9(838):29–45

    Article  Google Scholar 

  • Chang E, Miller JS, Sun J, Yu WW, Colvin VL, Drezek R, West JL (2005) Protease-activated quantum dot probes. Biochem Biophys Res Commun 334:1317–1321

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Stefflova K, Niedre MJ, Wilson BC, Chance B, Glickson JD, Zheng G (2004) Protease-triggered photosensitizing beacon based on singlet oxygen quenching and activation. J Am Chem Soc 126:11450–11451

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Gryshuk A, Achilefu S, Ohulchansky T, Potter W, Zhong T, Morgan J, Chance B, Prasad PN, Henderson BW, Oseroff A, Pandey RK (2005) A novel approach to a bifunctional photosensitizer for tumor imaging and phototherapy. Bioconjug Chem 16:1264–1274

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Jarvi M, Lo P, Stefflova K, Wilson BC, Zheng G (2007) Using the singlet oxygen scavenging property of carotenoid in photodynamic molecular beacons to minimize photodamage to non-targeted cells. Photochem Photobiol Sci 6:1311–1317

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Lovell JF, Lo P, Stefflova K, Niedre M, Wilson BC, Zheng G (2008) A tumor mRNA-triggered photodynamic molecular beacon based on oligonucleotide hairpin control of singlet oxygen production. Photochem Photobiol Sci 7:775–781

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Liu TWB, Lo P, Wilson BC, Zheng G (2009) "Zipper" molecular beacons: a generalized strategy to optimize the performance of activatable protease probes. Bioconjug Chem 20(10):1836–1842

    Article  PubMed  CAS  Google Scholar 

  • Cicek M, Oursler MJ (2006) Breast cancer bone metastasis and current small therapeutics. Cancer Metastasis Rev 25:635–644

    Article  PubMed  CAS  Google Scholar 

  • Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q (1998) Photodynamic therapy. J Natl Cancer Inst 90(12):889–905

    Article  PubMed  CAS  Google Scholar 

  • Forster T (1946) Energy migration and fluorescence. Naturwissenschaften 6:166–175

    Article  Google Scholar 

  • Fragioni JV (2003) In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol 7(5):626–634

    Article  Google Scholar 

  • Funovics M, Weissleder R, Tung C (2003) Protease sensors for bioimaging. Anal Bioanal Chem 377:956–963

    Article  PubMed  CAS  Google Scholar 

  • Gabriel D, Campo MA, Gurny R, Lange N (2007) Tailoring protease-sensitive photodynamic agents to specific disease-associated enzymes. Bioconjug Chem 18:1070–1077

    Article  PubMed  CAS  Google Scholar 

  • Hsiao J, Law B, Weissleder R, Tung C (2006) In-vivo imaging of tumor associated urokinase-type plasminogen activator activity. J Biomed Opt 11:34013

    Article  PubMed  Google Scholar 

  • Ii M, Yamamoto H, Adachi Y, Maruyama Y, Shinomura Y (2006) Role of matrix metalloproteinase-7 (matrilysin) in human cancer invasion, apoptosis, growth, and angiogenesis. Exp Biol Med 231:20–27

    CAS  Google Scholar 

  • Jiang T, Olson ES, Nguyen QT, Roy M, Jennings PA, Tsien RY (2004) Tumor imaging by means of proteolytic activation of cell-penetrating peptides. Proc Natl Acad Sci USA 101:17867–17872

    Article  PubMed  CAS  Google Scholar 

  • Josephson L, Kircher MF, Mahmood U, Tang Y, Weissleder R (2002) Near-infrared fluorescent nanoparticles as combined MR/optical imaging probes. Bioconjug Chem 13:554–560

    Article  PubMed  CAS  Google Scholar 

  • Kelemen LE (2006) The role of folate receptor alpha in cancer development, progression and treatment: cause, consequence or innocent bystander? Int J Cancer 119:243–250

    Article  PubMed  CAS  Google Scholar 

  • Kircher MF, Mahmood U, King RS, Weissleder R, Josephson L (2003) A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation. Cancer Res 63:8122–8125

    PubMed  CAS  Google Scholar 

  • Krinick NL, Sun Y, Joyner D, Spikes JD, Straight RC, Kopecek J (1994) A polymeric drug delivery system for the simultaneous delivery of drugs activatable by enzymes and/or light. J Biomater Sci Polym Ed 5:303–324

    Article  PubMed  CAS  Google Scholar 

  • Law B, Tung C (2009) Proteolysis: a biological process adapted in drug delivery, therapy, and imaging. Bioconjug Chem 20:1683–1695

    Article  PubMed  CAS  Google Scholar 

  • Law B, Curino A, Bugge TH, Weissleder R, Tung C (2004) Design, synthesis, and characterization of urokinase plasminogen-activator-sensitive near-infrared reporter. Chem Biol 11:99–106

    PubMed  CAS  Google Scholar 

  • Law B, Weissleder R, Tung C (2007) Protease-sensitive fluorescent nanofibers. Bioconjug Chem 18:1701–1704

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Ryu JH, Park K, Lee A, Lee S, Youn I, Ahn C, Yoon SM, Myung S, Moon DH, Chen X, Choi K, Kwon IC, Kim K (2009) Polymeric nanoparticle-based activatable near-infrared nanosensor for protease determination in vivo. Nano Lett 9(12):4412–4416

    Article  PubMed  CAS  Google Scholar 

  • Lo P, Chen J, Stefflova K, Warren MS, Navab R, Bandarchi B, Mullins S, Tsao M, Cheng JD, Zheng G (2009) Photodynamic molecular beacon triggered by fibroblast activation protein on cancer-associated fibroblasts for diagnosis and treatment of epithelial cancers. J Med Chem 52:358–368

    Article  PubMed  CAS  Google Scholar 

  • Lobb RR, Auld DS (1979) Determination of enzyme mechanisms by radiationless energy transfer kinetics. Proc Natl Acad Sci USA 76(6):2684–2688

    Article  PubMed  CAS  Google Scholar 

  • Lovell JF, Chen J, Jarvi MT, Cao W, Allen AD, Liu Y, Tidwell TT, Wilson BC, Zheng G (2009) FRET quenching of photosensitizer singlet oxygen generation. J Phys Chem B 113:3203–3211

    Article  PubMed  CAS  Google Scholar 

  • Mahmood U, Weissleder R (2003) Near-infrared optical imaging of proteases in cancer. Mol Cancer Ther 2:489–496

    PubMed  CAS  Google Scholar 

  • Matayoshi ED, Wang GT, Krafft GA, Erickson J (1990) Novel fluorogenic substrates for assaying retroviral proteases by resonance energy transfer. Science 247:954–958

    Article  PubMed  CAS  Google Scholar 

  • Maxwell D, Chang Q, Zhang X, Barnett EM, Piwnica-Worms D (2009) An improved cell-penetrating, caspase-activatable, near-infrared fluorescent peptide for apoptosis imaging. Bioconjug Chem 20:702–709

    Article  PubMed  CAS  Google Scholar 

  • McIntyre JO, Fingleton B, Wells KS, Piston DW, Lynch CC, Gautam S, Matrisian LM (2004) Development of a novel fluorogenic proteolytic beacon for in vivo detection and imaging of tumour-associated matrix metalloproteinase-7 activity. Biochem J 377:617–628

    Article  PubMed  CAS  Google Scholar 

  • Medintz IL, Clapp AR, Brunel FM, Tiefenbrunn T, Uyeda HT, Chang EL, Deschamps JR, Dawson PE, Mattoussi H (2006) Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates. Nat Mater 5(7):581–589

    Article  PubMed  CAS  Google Scholar 

  • Moan J (1990) On the diffusion length of singlet oxygen in cells and tissues. J Photochem Photobiol B 6:344

    Article  Google Scholar 

  • Mohamed MM, Sloane BF (2006) Near-infrared optical imaging of proteases in cancer. Nat Rev Cancer 6:764–775

    Article  PubMed  CAS  Google Scholar 

  • Ntziachristos V, Bremer C, Weissleder R (2003) Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur Radiol 13:195–208

    PubMed  Google Scholar 

  • Pandey SK, Gryshuk AL, Sajjad M, Zheng X, Chen Y, Abouzeid MM, Morgan J, Charamisinau I, Nabi HA, Oseroff A, Pandey RK (2005) Multimodality agents for tumor imaging (PET, fluorescence) and photodynamic therapy. A possible “see and treat” approach. J Med Chem 48:6286–6295

    Article  PubMed  CAS  Google Scholar 

  • Pandey AK, Sajjad M, Chen Y, Pandey A, Missert JR, Batt C, Yaho R, Nabi HA, Oseroff AR, Pandey RK (2009a) Compared to purpurinimides, the pyropheophorbide containing an iodobenzyl group showed enhanced PDT efficacy and tumor imaging (124I-PET) ability. J Med Chem 20:274–282

    CAS  Google Scholar 

  • Pandey SK, Sajjad M, Chen Y, Zheng X, Yao R, Missert JR, Batt C, Bani HA, Oseroff AR, Pandey RK (2009b) Comparative positron-emission tomography (PET) imaging and phototherapeutic potential of 124I- labeled methyl- 3-(1′-iodobenzyloxyethyl)pyropheophorbide-a vs the corresponding glucose and galactose conjugates. J Med Chem 52:445–455

    Article  PubMed  CAS  Google Scholar 

  • Pham W, Choi Y, Weissleder R, Tung CH (2004) Developing a peptide-based near-infrared molecular probe for protease sensing. Bioconjug Chem 15:1403–1407

    Article  PubMed  CAS  Google Scholar 

  • Salazar MD, Ratnam M (2007) The folate receptor: what does it promise in tissue-targeted therapeutics? Cancer Metastasis Rev 26:141–152

    Article  PubMed  CAS  Google Scholar 

  • Scherer RL, McIntyre JO, Matrisian LM (2008) Imaging matrix metalloproteinases in cancer. Cancer Metastasis Rev 27:679–690

    Article  PubMed  Google Scholar 

  • Sega EI, Low PS (2008) Tumor detection using folate receptor-targeted imaging agents. Cancer Metastasis Rev 27:655–664

    Article  PubMed  CAS  Google Scholar 

  • Stefflova K, Chen J, Marotta D, Li H, Zheng G (2006a) Photodynamic therapy agent with a built-in apoptosis sensor for evaluating its own therapeutic outcome in situ. J Med Chem 49:3850–3856

    Article  PubMed  CAS  Google Scholar 

  • Stefflova K, Chen J, Li H, Zheng G (2006b) Targeted photodynamic therapy agent with a built-in apoptosis sensor for in vivo near-infrared imaging of tumor apoptosis triggered by its photosensitization in situ. Mol Imaging 5:520–532

    PubMed  Google Scholar 

  • Stefflova K, Chen J, Zheng G (2007) Killer beacons for combined cancer imaging and therapy. Curr Med Chem 14:2110–2125

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Husimi Y, Komatsu H, Suzuki K, Douglas KT (2008) Quantum dot FRET biosensors that respond to pH, to proteolytic or nucleolytic cleavage, to DNA synthesis, or to a multiplexing combination. J Am Chem Soc 130:5720–5725

    Article  PubMed  CAS  Google Scholar 

  • Tung C (2004) Fluorescent peptide probes for in vivo diagnostic imaging. Biopolymers 76:391–403

    Article  PubMed  CAS  Google Scholar 

  • Turk B (2006) Targeting proteases: successes, failures and future prospects. Nat Rev Drug Discov. 5:785–799

    Article  PubMed  CAS  Google Scholar 

  • Weissleder R, Ntziachristos V (2003) Shedding light onto live molecular targets. Nat Med 9:123–128

    Article  PubMed  CAS  Google Scholar 

  • Weissleder R, Tung CH, Mahmood U, Bogdanov A (1999) In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat Biotechnol 17:375–378

    Article  PubMed  CAS  Google Scholar 

  • Wilson BC, Patterson MS (2008) The physics, biophysics and technology of photodynamic therapy. Phys Med Biol 53:R61–R109

    Article  PubMed  CAS  Google Scholar 

  • Zheng G, Chen Y, Intes X, Chance B, Glickson J (2004) Contrast-enhanced near-infrared (NIR) optical imaging for subsurface cancer detection. J Porphyrins Phthalocyan 8:1105–1117

    Google Scholar 

  • Zheng G, Chen J, Stefflova K, Jarvi M, Li H, Wilson BC (2007) Photodynamic molecular beacon as an activatable photosensitizer based on protease-controlled singlet oxygen quenching and activation. Proc Natl Acad Sci USA 104:8989–8994

    Article  PubMed  CAS  Google Scholar 

  • Zheng X, Morgan J, Pandey SK, Chen Y, Tracy E, Baumann H, Missert JR, Batt C, Jackson J, Bellnier DA, Henderson BW, Pandey RK (2009) Conjugation of 2-(1′-hexyloxyethyl)-2-devinylpyropheophorbide-a (HPPH) to carbohydrates changes its subcellular distribution and enhances photodynamic activity in vivo. J Med Chem 52:4306–4318

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, T.W.B., Chen, J. & Zheng, G. Peptide-based molecular beacons for cancer imaging and therapy. Amino Acids 41, 1123–1134 (2011). https://doi.org/10.1007/s00726-010-0499-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0499-1

Keywords

Navigation