Skip to main content

Advertisement

Log in

Effects of glutamine on the nuclear factor-kappaB signaling pathway of murine peritoneal macrophages

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the effect of glutamine on the expression of proteins involved in the nuclear factor-kappaB (NF-κB) signaling pathway of murine peritoneal macrophages. Since glutamine is essential for the normal functioning of macrophages, it was hypothesized that in vitro glutamine supplementation would increase NF-κB activation. Peritoneal macrophages were pretreated with glutamine (0, 0.6, 2 and 10 mM) before incubation with lipopolysaccharide (LPS), and the effects of glutamine on the production of tumor necrosis factor-alpha and on the expression and activity of proteins involved in the NF-κB signaling pathway were studied by an enzyme linked immuno-sorbent assay, Western blotting, and an electrophoretic mobility shift assay. Glutamine treatment (2 and 10 mM) increased the activation of NF-κB in LPS-stimulated peritoneal macrophages (P < 0.05). In non-stimulated cells, glutamine treatment (2 and 10 mM) significantly reduced IκB-α protein expression (P < 0.05). Glutamine modulates NF-κB signaling pathway by reducing the level of IκB-α, leading to an increase in NF-κB within the nucleus in peritoneal macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bellows CF, Jaffe BM (1999) Glutamine is essential for nitric oxide synthesis by murine macrophages. J Surg Res 86:213–219

    Article  CAS  PubMed  Google Scholar 

  • Brasse-Lagnel C, Lavoinne A, Husson A (2009) Control of mammalian gene expression by amino acids, especially glutamine. FEBS J 276:1826–1844

    Article  CAS  PubMed  Google Scholar 

  • Brown MD, Sacks DB (2008) Compartmentalised MAPK pathways. Handb Exp Pharmacol 186:205–235

    Article  CAS  PubMed  Google Scholar 

  • Chatham JC, Nöt LG, Fülöp N, Marchase RB (2008) Hexosamine biosynthesis and protein O-glycosylation: the first line of defense against stress, ischemia, and trauma. Shock 29:431–440

    CAS  PubMed  Google Scholar 

  • Cooke CL, Davidge ST (2002) Peroxynitrite increases iNOS through NF-kappaB and decreases prostacyclin synthase in endothelial cells. Am J Physiol Cell Physiol 282:C395–C402

    CAS  PubMed  Google Scholar 

  • Costa Rosa LF, Curi R, Murphy C, Newsholme P (1995) Effect of adrenaline and phorbol myristate acetate or bacterial lipopolysaccharide on stimulation of pathways of macrophage glucose, glutamine and O2 metabolism. Evidence for cyclic AMP-dependent protein kinase mediated inhibition of glucose-6-phosphate dehydrogenase and activation of NADP+-dependent ‘malic’ enzyme. Biochem J 310:709–714

    CAS  PubMed  Google Scholar 

  • Curi R, Newsholme P, Pithon-Curi TC, Pires-de-Melo M, Garcia C, Homem-de-Bittencourt PI Jr et al (1999) Metabolic fate of glutamine in lymphocytes, macrophages and neutrophils. Braz J Med Biol Res 32:15–21

    Article  CAS  PubMed  Google Scholar 

  • Curi R, Lagranha CJ, Doi SQ, Sellitti DF, Procopio J, Pithon-Curi TC et al (2005) Molecular mechanisms of glutamine action. J Cell Physiol 204:392–401

    Article  CAS  PubMed  Google Scholar 

  • Curi R, Newsholme P, Procopio J, Lagranha C, Gorjão R, Pithon-Curi TC (2007) Glutamine, gene expression, and cell function. Front Biosci 12:344–357

    Article  CAS  PubMed  Google Scholar 

  • Déchelotte P, Hasselmann M, Cynober L, Allaouchiche B, Coëffier M, Hecketsweiler B, Merle V, Mazerolles M, Samba D, Guillou YM, Petit J, Mansoor O, Colas G, Cohendy R, Barnoud D, Czernichow P, Bleichner G (2006) l-Alanyl-l-glutamine dipeptide-supplemented total parenteral nutrition reduces infectious complications and glucose intolerance in critically ill patients: the French controlled, randomized, double-blind, multicenter study. Crit Care Med 34:598–604

    Article  PubMed  CAS  Google Scholar 

  • Deger C, Erbil Y, Giris M, Yanik BT, Tunca F, Olgac V et al (2006) The effect of glutamine on pancreatic damage in TNBS induced colitis. Dig Dis Sci 51:1841–1846

    Article  CAS  PubMed  Google Scholar 

  • Eagle H (1955) Nutrition needs of mammalian cells in tissue cultures. Science 122:501–504

    Article  CAS  PubMed  Google Scholar 

  • Eagle H, Oyama VI, Levy M (1955) The growth response of mammalian cells in tissue culture to l-glutamine and l-glutamic acid. J Biol Chem 218:607–617

    Google Scholar 

  • Erbil Y, Oztezcan S, Giriş M, Barbaros U, Olgaç V, Bilge H et al (2005) The effect of glutamine on radiation-induced organ damage. Life Sci 78:376–382

    Article  CAS  PubMed  Google Scholar 

  • Exner R, Wessner B, Manhart N, Roth E (2000) Therapeutic potential of glutathione. Wien Klin Wochenschr 112:610–616

    CAS  PubMed  Google Scholar 

  • Fillmann H, Kretzmann NA, San-Miguel B, Liesuy S, Marroni N, Gonzalez-Gallego J et al (2007) Glutamine inhibits over-expression of pro-inflammatory genes and down-regulates the nuclear factor kappa B pathway in an experimental model of colitis in the rat. Toxicology 236:217–226

    Article  CAS  PubMed  Google Scholar 

  • Ghosh S, Hayden MS (2008) New regulators of NF-kappaB in inflammation. Nat Rev Immunol 8:837–848

    Article  CAS  PubMed  Google Scholar 

  • Gilmore TD (2006) Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 25:6680–6684

    Article  CAS  PubMed  Google Scholar 

  • Gordon S (1986) Biology of the macrophage. J Cell Sci 4:267–286

    CAS  Google Scholar 

  • Hamilton JA, Tak PP (2009) The dynamics of macrophage lineage populations in inflammatory and autoimmune diseases. Arthritis Rheum 60:1210–1221

    Article  PubMed  Google Scholar 

  • Hayden MS, Ghosh S (2008) Shared principles in NF-κB signaling. Cell 132:344–362

    Article  CAS  PubMed  Google Scholar 

  • Hubert-Buron A, Leblond J, Jacquot A, Ducrotte P, De′chelotte P, Coeffier M (2006) Glutamine pretreatment reduces IL-8 production in human intestinal epithelial cells by limiting IκBa ubiquitination. J Nutr 136:1461–1465

    CAS  PubMed  Google Scholar 

  • Kim YS, Kim GY, Kim JH, You HJ, Park YM, Lee HK et al (2006) Glutamine inhibits lipopolysaccharide-induced cytoplasmic phospholipase A2 activation and protects again endotoxin shock in mouse. Shock 25:290–294

    Article  CAS  PubMed  Google Scholar 

  • Lacey JM, Wilmore DW (1990) Is glutamine a conditionally essential amino acid? Nutr Rev 48:297–309

    CAS  PubMed  Google Scholar 

  • Li Q, Verma IM (2002) NF-κB regulation in the immune system. Nat Rev Immunol 2:725–734

    Article  CAS  PubMed  Google Scholar 

  • Malemud CJ, Miller AH (2008) Pro-inflammatory cytokine-induced SAPK/MAPK and JAK/STAT in rheumatoid arthritis and the new anti-depression drugs. Expert Opin Ther Targets 12:171–183

    Article  CAS  PubMed  Google Scholar 

  • Murphy C, Newsholme P (1998) Importance of glutamine metabolism in murine macrophages and human monocytes to l-arginine biosynthesis and rates of nitrite or urea production. Clin Sci 95:397–407

    Article  CAS  PubMed  Google Scholar 

  • Murphy C, Newsholme P (1999) Macrophage-mediated lysis of a beta-cell line, tumour necrosis factor-alpha release from bacillus Calmette-Guérin (BCG)-activated murine macrophages and interleukin-8 release from human monocytes are dependent on extracellular glutamine concentration and glutamine metabolism. Clin Sci 96:89–97

    Article  CAS  PubMed  Google Scholar 

  • Newsholme P (2001) Why is l-glutamine metabolism important to cells of the immune system in health, postinjury, surgery or infection? J Nutr 131:2515S–2522S

    CAS  PubMed  Google Scholar 

  • Newsholme P, Newsholme EA (1989) Rates of utilization of glucose, glutamine and oleate and formation of end-products by mouse peritoneal macrophages in culture. Biochem J 261:211–218

    CAS  PubMed  Google Scholar 

  • Newsholme P, Curi R, Gordon S, Newsholme EA (1986) Metabolism of glucose, glutamine, long-chain fatty acids and ketone bodies by murine macrophages. Biochem J 239:121–125

    CAS  PubMed  Google Scholar 

  • Newsholme P, Costa Rosa LF, Newsholme EA, Curi R (1996) The importance of fuel metabolism to macrophage function. Cell Biochem Funct 14:1–10

    Article  CAS  PubMed  Google Scholar 

  • Newsholme P, Curi R, Pithon Curi TC, Murphy CJ, Garcia C, Pires de Melo M (1999) Glutamine metabolism by lymphocytes, macrophages, and neutrophils: its importance in health and disease. J Nutr Biochem 10:316–324

    Article  CAS  PubMed  Google Scholar 

  • O’Neill AJ, O’Neill S, Hegarty NJ, Coffee RN, Gibbons N, Brady H, Fitzpatrick JM, Watson RW (2000) Glutathione depletion-induced neutrophil apoptosis is caspase 3 dependent. Shock 14:605–609

    Article  PubMed  Google Scholar 

  • Osborn L, Kunkel S, Nabel GJ (1989) Tumor necrosis factor alpha and interleukin 1 stimulate the human immunodeficiency virus enhancer by activation of the nuclear factor kappa B. Proc Natl Acad Sci USA 86:2336–2340

    Article  CAS  PubMed  Google Scholar 

  • Perkins ND (2007) Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol 8:49–62

    Article  CAS  PubMed  Google Scholar 

  • Pithon-Curi TC, De Melo MP, Curi R (2004) Glucose and glutamine utilization by rat lymphocytes, monocytes and neutrophils in culture: a comparative study. Cell Biochem Funct 22:321–326

    Article  CAS  PubMed  Google Scholar 

  • Rogero MM, Tirapegui J, Pedrosa RG, Pires ISO, Castro IA (2004) Plasma and tissue glutamine response to acute and chronic supplementation with l-glutamine and l-alanyl-l-glutamine in rats. Nutr Res 24:261–270

    Article  CAS  Google Scholar 

  • Rogero MM, Tirapegui J, Pedrosa RG, Castro IA, Pires ISO (2006) Effect of alanyl-glutamine supplementation on plasma and tissue glutamine concentrations in rats submitted to exhaustive exercise. Nutrition 22:564–571

    Article  CAS  PubMed  Google Scholar 

  • Rogero MM, Borelli P, Fock RA, Pires ISO, Tirapegui J (2008a) Glutamine supplementation reverses impaired macrophage function resulting from early weaning in mice. Nutrition 24:589–598

    Article  CAS  PubMed  Google Scholar 

  • Rogero MM, Borelli P, Vinolo M, Fock R, Pires I, Tirapegui J (2008b) Dietary glutamine supplementation affects macrophage function, hematopoiesis and nutritional status in early weaned mice. Clin Nutr 27:386–397

    Article  CAS  PubMed  Google Scholar 

  • Rogero MM, Tirapegui J, Vinolo MAR, Borges MC, Castro IA, Pires ISO et al (2008c) Dietary glutamine supplementation increases the function of peritoneal macrophages and hemopoiesis in early-weaned mice inoculated with Mycobacterium bovis bacillus Calmette-Guérin. J Nutr 138:1343–1348

    CAS  PubMed  Google Scholar 

  • Rong Y, Baudry M (1996) Seizure activity results in a rapid induction of nuclear factor-kappa B in adult but not juvenile rat limbic structures. J Neurochem 67:662–668

    Article  CAS  PubMed  Google Scholar 

  • Roth E (2008) Nonnutritive effects of glutamine. J Nutr 138:2025S–2031S

    CAS  PubMed  Google Scholar 

  • Roth E, Oehler R, Manhart N, Exner R, Wessner B, Strasser E, Spittler A (2002) Regulative potential of glutamine-relation to glutathione metabolism. Nutrition 18:217–221

    Article  CAS  PubMed  Google Scholar 

  • Rowbottom DG, Keast D, Morton AR (1996) The emerging role of glutamine as an indicator of exercise stress and overtraining. Sports Med 21:80–97

    Article  CAS  PubMed  Google Scholar 

  • Sen R, Baltimore D (1986) Inducibility of kappa immunoglobulin enhancer-binding protein NF-κB by a posttranslational mechanism. Cell 47:921–928

    Article  CAS  PubMed  Google Scholar 

  • Sharif O, Bolshakov VN, Raines S, Newham P, Perkins ND (2007) Transcriptional profiling of the LPS induced NF-kappaB response in macrophages. BMC Immunol 8:1

    Article  PubMed  CAS  Google Scholar 

  • Singleton KD, Wischmeyer PE (2007) Glutamine’s protection against sepsis, lung injury is dependent on heat shock protein 70 expression. Am J Physiol Regul Integr Comp Physiol 292:R1839–R1845

    CAS  PubMed  Google Scholar 

  • Singleton KD, Beckey VE, Wischmeyer PE (2005) Glutamine prevents activation of NF-kappaB, stress kinase pathways, attenuates inflammatory cytokine release, prevents acute respiratory distress syndrome (ARDS) following sepsis. Shock 24:583–589

    Article  CAS  PubMed  Google Scholar 

  • Spittler A, Holzer S, Oehler R, Boltz-Nitulescu G, Roth E (1997) A glutamine deficiency impairs the function of cultured human monocytes. Clin Nutr 16:97–99

    Article  CAS  PubMed  Google Scholar 

  • Vallabhapurapu S, Karin M (2009) Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol 27:693–733

    Article  CAS  PubMed  Google Scholar 

  • Vanden Berghe W, Vermeulen L, Delerive P, De Bosscher K, Staels B, Haegeman G (2003) A paradigm for gene regulation: inflammation, NF-kappaB and PPAR. Adv Exp Med Biol 544:181–196

    Google Scholar 

  • Wallace C, Keast D (1992) Glutamine and macrophages function. Metabolism 41:1016–1020

    Article  CAS  PubMed  Google Scholar 

  • Wischmeyer PE, Riehm J, Singleton KD, Ren H, Musch MW, Kahana M et al (2003) Glutamine attenuates tumor necrosis factor-alpha release and enhances heat shock protein 72 in human peripheral blood mononuclear cells. Nutrition 19:1–6

    Article  CAS  PubMed  Google Scholar 

  • Yassad A, Lavoinne A, Bion A, Daveau M, Husson A (1997) Glutamine accelerates IL-6 production by rat peritoneal macrophages in culture. FEBS Lett 413:81–84

    Article  CAS  PubMed  Google Scholar 

  • Yassad A, Husson A, Bion A, Lavoinne A (2000) Synthesis of interleukin 1beta and interleukin 6 by stimulated rat peritoneal macrophages: modulation by glutamine. Cytokine 12:1288–1291

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Wang X, Wang W, Li N, Li J (2008) Glutamine reduces TNF-a by enhancing glutathione synthesis in lipopolysaccharide-stimulated alveolar epithelial cells of rats. Inflammation 31:344–350

    Article  CAS  PubMed  Google Scholar 

  • Ziegler TR, Ogden LG, Singleton KD, Luo M, Fernandez-Estivariz C, Griffith DP, Galloway JR, Wischmeyer PE (2005) Parenteral glutamine increases serum heat shock protein 70 in critically ill patients. Intensive Care Med 31:1079–1086

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by grants from the Fundação de Amparo à Pesquisa do Estado de São Paulo (#07/53448-8). MMR is thankful for the PhD stipend granted by the Fundação de Amparo à Pesquisa do Estado de São Paulo.

Conflict of interest statement

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Macedo Rogero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rogero, M.M., Borelli, P., Fock, R.A. et al. Effects of glutamine on the nuclear factor-kappaB signaling pathway of murine peritoneal macrophages. Amino Acids 39, 435–441 (2010). https://doi.org/10.1007/s00726-009-0459-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-009-0459-9

Keywords

Navigation