Skip to main content
Log in

Impact of bifunctional chelators on biological properties of 111In-labeled cyclic peptide RGD dimers

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The present study describes the synthesis and biological evaluation of 111In(DOTA-3P-RGD2) (DOTA = 1,4,7,10-tetraazacyclo-dodecane-1,4,7,10-tetraacetic acid; 3P-RGD2 = PEG4-E[PEG4-c(RGDfK)]2; PEG4 = 15-amino-4,7,10,13-tetraoxapentadecanoic acid), 111In(DTPA-3P-RGD2) (DTPA = diethylenetriaminepentaacetic acid) and 111In(DTPA-Bn-3P-RGD2) (DTPA-Bn = 2-(p-thioureidobenzyl)-diethylenetriaminepentaacetic acid) as potential radiotracers for imaging tumor integrin αvβ3 expression in athymic nude mice bearing U87MG glioma xenografts. The aim of the study is to assess the impact of the bifunctional chelator (BFC) (DOTA vs. DTPA or DTPA-Bn) on the biodistribution characteristics of the 111In-labeled 3P-RGD2. IC50 values of DOTA-3P-RGD2, DTPA-3P-RGD2 and DTPA-Bn-3P-RGD2 were determined to be 1.3 ± 0.2, 1.4 ± 0.3, 1.3 ± 0.3 nM, respectively, against 125I-c(RGDyK) bound to U87MG human glioma cells. Radiotracers were prepared by reacting 111InCl3 with the RGD peptide conjugates in NH4OAc buffer (100 mM, pH 5.5). For DOTA-3P-RGD2, successful radiolabeling could be completed by heating the reaction mixture at 100°C for 15–20 min. For DTPA-3P-RGD2 and DTPA-Bn-3P-RGD2, the radiolabeling was almost instantaneous at room temperature. The specific activity was ~50 mCi/mg (or ~100 mCi/μmol) for 111In(DOTA-3P-RGD2) and ~200 mCi/mg (or ~400 mCi/μmol) for 111In(DTPA-3P-RGD2). The results from biodistribution studies showed that all the three radiotracers have high tumor uptake and excellent tumor-to-background (T/B) ratios up to 4-h postinjection. After that time point, both 111In(DTPA-3P-RGD2) and 111In(DTPA-Bn-3P-RGD2) showed a much faster tumor washout and poorer T/B ratios than 111In(DOTA-3P-RGD2). The tumor uptake of 111In(DOTA-3P-RGD2) is integrin αvβ3- and RGD-specific. 111In(DOTA-3P-RGD2) is metabolically stable while only ~25% of 111In(DTPA-Bn-3P-RGD2) remains intact in the feces during 2-h period. On the basis of results from this study, it was concluded that 111In(DTPA-3P-RGD2) can be an effective integrin αvβ3-targeted radiotracer if the high-specific activity is required. However, DOTA remains to be the BFC of choice for the development of therapeutic lanthanide radiotracers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aloj L, Cacraco C, Panico M, Zannetti A, Del Vecchio S, Tesauro D, De Luca S, Arra C, Pedone C, Morelli G, Salvatore M (2004) In vitro and in vivo evaluation of 111In-DTPAGlu-G-CCK8 for cholecystokinin-B-receptor imaging. J Nucl Med 45:485–494

    PubMed  CAS  Google Scholar 

  • Ando A, Ando I, Hiraki T, Hishada K (1989) Relation between the location of the elements in the periodic table and various organ uptake rates. Nucl Med Biol 16:57–80

    CAS  Google Scholar 

  • Bakker WH, Albert R, Bruns C, Breeman WA, Hofland LJ, Marbach P, Pless J, Pralet D, Stolz B, Koper JW, Lamberts SWJ, Visser TJ, Krenning EP (1991) [111In-DTPA-D-Phe1]-octreotide, a potential radiopharmaceutical for imaging of somatostatin receptor-positive tumors: synthesis, radiolabeling and in vitro validation. Life Sci 49:1583–1591

    Article  PubMed  CAS  Google Scholar 

  • Beer AJ, Haubner R, Goebel M, Luderschmidt S, Spilker ME, Wester HJ, Weber WA, Schwaiger M (2005) Biodistribution and pharmacokinetics of the αvβ3-selective tracer 18F-Galacto-RGD in cancer patients. J Nucl Med 46:1333–1341

    PubMed  CAS  Google Scholar 

  • Bodei L, Cremonesi M, Grana C, Rocca P, Bartolomei M, Chinol M, Paganelli G (2004) Receptor radionuclide therapy with 90Y-[DOTA]0-Tyr3-octreotide (90Y-DOTATOC) in neuroendocrine tumors. Eur J Nucl Med Mol Imaging 31:1038–1046

    Article  PubMed  CAS  Google Scholar 

  • Chen X (2006) Multimodality imaging of tumor integrin αvβ3 expression. Mini Rev Med Chem 6:227–234

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Liu S, Hou Y, Tohme M, Park R, Bading JR, Conti PS (2004a) MicroPET imaging of breast cancer αv-integrin expression with 64Cu-labeled dimeric RGD peptides. Mol Imaging Biol 6:350–359

    Article  PubMed  Google Scholar 

  • Chen X, Park R, Hou Y, Tohme M, Shahinian AH, Banding JR, Conti PS (2004b) MicroPET and autoradiographic imaging of CRP receptor expression with 64Cu-DOTA-[Lys3]bombesin in human prostate adenocarcinoma xenografts. J Nucl Med 45:1390–1397

    PubMed  CAS  Google Scholar 

  • Chen X, Park R, Tohme M, Shahinian AH, Bading JR, Conti PS (2004c) MicroPET and autoradiographic imaging of breast cancer αv-integrin expression using 18F- and 64Cu-labeled RGD peptide. Bioconj Chem 15:41–49

    Article  Google Scholar 

  • Chen X, Tohme M, Park R, Hou Y, Bading JR, Conti PS (2004d) MicroPET imaging of breast cancer αv-integrin expression with 18F-labeled dimeric RGD peptide. Mol Imaging 3:96–104

    Article  PubMed  CAS  Google Scholar 

  • de Visser M, Bernard HF, Erion JL, Schmidt MA, Srinivasan A, Waser B, Reubi JC, Krenning EP, de Jong M (2007) Novel 111In-labelled bombesin analogues for molecular imaging of prostate tumors. Eur J Nucl Med Mol Imaging 34:1228–1238

    Article  PubMed  Google Scholar 

  • Decristoforo C, Faintuch-Linkowski B, Rey A, von Guggenberg E, Rupprich M, Hernandez-Gonzales I, Rodrigo T, Haubner R (2006) [99mTc]HYNIC-RGD for imaging integrin αvβ3 expression. Nucl Med Biol 33:945–952

    Article  PubMed  CAS  Google Scholar 

  • Dijkgraaf I, Kruijtzer JAW, Liu S, Soede A, Oyen WJG, Corstens FHM, Liskamp RMJ, Boerman OC (2007a) Improved targeting of the αvβ3 integrin by multimerization of RGD peptides. Eur J Nucl Med Mol Imaging 34:267–273

    Article  PubMed  CAS  Google Scholar 

  • Dijkgraaf I, Liu S, Kruijtzer JAW, Soede AC, Oyen WJG, Liskamp RMJ, Corstens FHM, Boerman OC (2007b) Effect of linker variation on the in vitro and in vivo characteristics of an 111In-labeled RGD peptide. Nucl Med Biol 34:29–35

    Article  PubMed  CAS  Google Scholar 

  • Haubner R, Wester HJ, Reuning U, Senekowisch-Schmidtke R, Diefenbach B, Kessler H, Stöcklin G, Schwaiger M (1999) Radiolabeled αvβ3 integrin antagonists: a new class of tracers for tumor imaging. J Nucl Med 40:1061–1071

    PubMed  CAS  Google Scholar 

  • Heppeler A, Froidevaux S, Mäcke HR, Jermann E, Béhé M, Powell P, Hennig M (1999) Radiometal-labelled macrocyclic chelator-derivatised somatostatin analogue with superb tumour targeting properties and potential for receptor-mediated internal radiotherapy. Chem Eur J 5:1974–1981

    Article  CAS  Google Scholar 

  • Janssen ML, Oyen WJG, Dijkgraaf I, Massuger LF, Frielink C, Edwards DS, Rajopadhye M, Boonstra H, Corstens FH, Boerman OC (2002) Tumor targeting with radiolabeled αvβ3 integrin binding peptides in a nude mouse model. Cancer Res 62:6146–6151

    PubMed  CAS  Google Scholar 

  • Jia B, Shi J, Yang Z, Xu B, Liu Z, Zhao H, Liu S, Wang F (2006) 99mTc-labeled cyclic RGDfK dimer: initial evaluation for SPECT imaging of glioma integrin αvβ3 expression. Bioconj Chem 17:1069–1076

    Article  CAS  Google Scholar 

  • Jia B, Liu Z, Shi J, Yu ZL, Yang Z, Zhao HY, He ZJ, Liu S, Wang F (2008) Linker effects on biological properties of 111In-labeled DTPA conjugates of a cyclic RGDfK dimer. Bioconj Chem 19:201–210

    Article  CAS  Google Scholar 

  • Kenny LM, Coombes RC, Oulie I, Contractor KB, Miller M, Spinks TJ, McParland B, Cohen PS, Hui A, Palmieri C, Osman S, Glaser M, Turton D, Al-Nahhas A, Aboagye EO (2008) Phase I trial of the positron-emitting Arg-Gly-Asp (RGD) peptide radioligand 18F-AH111585 in breast cancer patients. J Nucl Med 49:879–886

    Article  PubMed  Google Scholar 

  • Koukouraki S, Strauss LG, Georgoulias V, Schuhmacher J, Haberkorn U, Karkavitsas N, Dimitrakopoulou-Strauss A (2006) Evaluation of the pharmacokinetics of 68Ga-DOTATOC in patients with metastatic neuroendocrine tumours scheduled for 90Y-DOTATOC therapy. Eur J Nucl Med Mol Imaging 33:460–466

    Article  PubMed  CAS  Google Scholar 

  • Kowalski J, Henze M, Schuhmacher J, Macke HR, Hofmann M, Haberkorn U (2003) Evaluation of positron emission tomography imaging using 68Ga-DOTA-D-Phe1-Tyr3-octreotide in comparison to 111In-DTPAOC SPECT. First results in patients with neuroendocrine tumors. Mol Imaging Biol 5:42–48

    Article  PubMed  Google Scholar 

  • Kwekkeboom DJ, de Herder WW, Kam BL, van Eijck CK, van Essen M, Kooij PP, Feelders RA, van Aken MO, Krenning EP (2008) Treatment with the radiolabeled somatostatin analog [177Lu-DOTA0, Tyr3]octreotate: toxicity, efficacy and survival. J Clin Oncol 26:2114–2130

    Article  Google Scholar 

  • Liu S (2004) The role of coordination chemistry in development of target-specific radiopharmaceuticals. Chem Soc Rev 33:445–461

    Article  PubMed  CAS  Google Scholar 

  • Liu S (2006) Radiolabeled multimeric cyclic RGD peptides as integrin αvβ3-targeted radiotracers for tumor imaging. Mol Pharm 3:472–487

    Article  PubMed  CAS  Google Scholar 

  • Liu S (2008) Bifunctional coupling agents for radiolabeling of biomolecules and target-specific delivery of metallic radionuclides. Adv Drug Deliv Rev 60:1347–1370

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Edwards DS (2001a) Bifunctional chelators for therapeutic lanthanide radiopharmaceuticals. Bioconj Chem 12:7–34

    Article  Google Scholar 

  • Liu S, Edwards DS (2001b) Synthesis and characterization of two 111In-labeled DTPA-peptide conjugates. Bioconj Chem 12:630–634

    Article  CAS  Google Scholar 

  • Liu S, Cheung E, Rajopadyhe M, Ziegler MC, Edwards DS (2001a) 90Y- and 177Lu-labeling of a DOTA conjugated vitronectin receptor antagonist for tumor therapy. Bioconj Chem 12:559–568

    Article  CAS  Google Scholar 

  • Liu S, Edwards DS, Ziegler MC, Harris AR, Hemingway SJ, Barrett JA (2001b) 99mTc-labeling of a hydrazinonictotinamide-conjugated vitronectin receptor antagonist. Bioconj Chem 12:624–629

    Article  CAS  Google Scholar 

  • Liu S, Robinson SP, Edwards DS (2003) Integrin αvβ3 directed radiopharmaceuticals for tumor imaging. Drugs Future 28:551–564

    Article  CAS  Google Scholar 

  • Liu S, Hsieh WY, Jiang Y, Kim YS, Sreerama SG, Chen X, Jia B, Wang F (2007) Evaluation of a 99mTc-labeled cyclic RGD tetramer for non-invasive imaging integrin αvβ3-positive breast cancer. Bioconj Chem 18:438–446

    Article  Google Scholar 

  • McQuade P, Miao Y, Yoo J, Quinn TP, Welch MJ, Lewis JS (2005) Imaging of melanoma using 64Cu- and 86Y-DOTA-ReCCMSH(Arg11), a cyclized peptide analogue of α-MSH. J Med Chem 48:2985–2992

    Article  PubMed  CAS  Google Scholar 

  • Shi J, Wang L, Kim YS, Zhai S, Liu Z, Chen X, Liu S (2008) Improving tumor uptake and excretion kinetics of 99mTc-labeled cyclic arginine-glycine-aspartic (RGD) dimers with triglycine linkers. J Med Chem 51:7980–7990

    Article  PubMed  CAS  Google Scholar 

  • Shi J, Wang L, Kim YS, Zhai S, Liu Z, Chen X, Liu S (2009) Improving tumor uptake and pharmacokinetics of 64Cu-labeled cyclic RGD dimers with triglycine and PEG4 linkers. Bioconj Chem 20:750–759

    Article  CAS  Google Scholar 

  • Smith-Jones PA, Vallabahajosula S, Goldsmith SJ, Navarro V, Hunter CJ, Bastidas D, Bander NH (2000) In vitro characterization of radiolabeled monoclonal antibodies specific for the extracellular domain of prostate specific membrane antigen. Cancer Res 60:5237–5243

    PubMed  CAS  Google Scholar 

  • Stimmel JB, Kull FC Jr (1998) Samarium-153 and lutetium-177 chelation properties of selected macrocyclic and cyclic ligands. Nucl Med Biol 25:117–125

    Article  PubMed  CAS  Google Scholar 

  • Thumshirn G, Hersel U, Goodman SL, Kessler H (2003) Multimeric cyclic RGD peptides as potential tools for tumor targeting: solid-phase peptide synthesis and chemoselective oxime ligation. Chem Eur J 9:2717–2725

    Article  CAS  Google Scholar 

  • Wang L, Kim YS, Shi J, Zhai S, Jia B, Liu Z, Zhao H, Wang F, Chen X, Liu S (2009) Improving tumor targeting capability and pharmacokinetics of 99mTc-labeled cyclic RGD dimers with PEG4 linkers. Mol Pharm 6:231–245

    Article  PubMed  CAS  Google Scholar 

  • Weber WA, Haubner R, Vabuliene E, Kuhnast B, Webster HJ, Schwaiger M (2001) Tumor angiogenesis targeting using imaging agents. Q J Nucl Med 45:179–182

    PubMed  CAS  Google Scholar 

  • Wu Y, Zhang X, Xiong Z, Cheng Z, Fisher DR, Liu S, Gambhir SS, Chen X (2005) MicroPET imaging of glioma integrin αvβ3 expression using 64Cu-labeled tetrameric RGD peptide. J Nucl Med 46:1707–1718

    PubMed  CAS  Google Scholar 

  • Wu Z, Li Z, Cai W, He L, Chin FT, Li F, Chen X (2007a) 18F-labeled mini-PEG spacered RGD dimmer (18FPRGD2): synthesis and micro-PET imaging αvβ3 integrin expression. Eur J Nucl Med Mol Imaging 34:1823–1831

    Article  PubMed  CAS  Google Scholar 

  • Wu Z, Li Z, Chen K, Cai W, He L, Chin FT, Li F, Chen X (2007b) Micro-PET of tumor integrin αvβ3 expression using 18F-labeled PEGylated tetrameric RGD peptide (18F-FPRGD4). J Nucl Med 48:1536–1544

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported, in part, by Purdue University and research grants: R01 CA115883-A2 from National Cancer Institute (NCI), R21 HL08396-01 from National Heart, Lung, and Blood Institute (NHLBI), and DE-FG02-08ER64684 from the Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, J., Kim, YS., Chakraborty, S. et al. Impact of bifunctional chelators on biological properties of 111In-labeled cyclic peptide RGD dimers. Amino Acids 41, 1059–1070 (2011). https://doi.org/10.1007/s00726-009-0439-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-009-0439-0

Keywords

Navigation