Skip to main content
Log in

Targeting polyamines and biogenic amines by green tea epigallocatechin-3-gallate

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Biogenic amines and polyamines are organic polycations derived from aromatic or cationic amino acids. They exert pleiotropic effects, more related to intercellular communication in the case of biogenic amines, and to intracellular signaling in the case of polyamines. The bioactive compound epigallocatechin-3-gallate (EGCG), a major component of green tea, has been shown to target key enzyme of biogenic amine and polyamine metabolic pathways. Herein, we review the specific effects of EGCG on concrete molecular targets of both biogenic amine and polyamine metabolic pathways, and discuss the relevance of these data to support the potential therapeutic interest of this compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

EC:

Epicatechin

ECG:

Epicatechin-3-gallate

EGC:

Epigallocatechin

EGCG:

Epigallocatechin-3-gallate

DDC:

Dopa decarboxylase

HDC:

Histidine decarboxylase

MCP-1:

Monocyte chemoattractant protein 1

ODC:

Ornithine decarboxylase

SAMDC:

S-adenosyl methionine decarboxylase

SSAT:

Spermidine/spermine N-acetyl transferase

References

  • Albrecht DS, Clubbs EA, Ferruzzi M, Bomser JA (2008) Epigallocatechin-3-gallate (EGCG) inhibits PC-3 prostate cancer cell proliferation via MEK-independent ERK1/2 activation. Chem Biol Interact 171:89–95

    Article  CAS  PubMed  Google Scholar 

  • Bachrach U, Wang YC (2002) Cancer therapy and prevention by green tea: role of ornithine decarboxylase. Amino Acids 22:1–13

    Article  CAS  PubMed  Google Scholar 

  • Beaven M (1978) Histamine. Its role in physiological and pathological processes. Monographs in allergy, vol 13. S. Karger AG, Basel

  • Bertoldi M, Gonsalvi M, Voltattorni CB (2001) Green tea polyphenols: novel irreversible inhibitors of dopa decarboxylase. Biochem Biophys Res Commun 284:90–93

    Article  CAS  PubMed  Google Scholar 

  • Brotchie J, Fitzer-Attas C (2009) Mechanisms compensating for dopamine loss in early Parkinson disease. Neurology 72:S32–S38

    Article  CAS  PubMed  Google Scholar 

  • Brown NJ, Roberts II (2001) The pharmaceutical basis of therapeutics. In: Hardman JG, Limbird LE, Gilman AG (eds) Histamine, bradykinin, and their antagonists, 10th edn. McGraw Hill, New York, pp 645–668

    Google Scholar 

  • Cabrera C, Artacho R, Giménez R (2006) Beneficial effects of green tea—a review. J Am Coll Nutr 25:79–99

    CAS  PubMed  Google Scholar 

  • Casero RA, Pegg AE (2009) Polyamine catabolism and disease. Biochem J 421:323–338

    Article  CAS  PubMed  Google Scholar 

  • Chaves P, Correa-Fiz F, Melgarejo E, Urdiales JL, Medina MA, Sánchez-Jiménez F (2007) Development of an expression macroarray for amine metabolism-related genes. Amino Acids 33:315–322

    Article  CAS  PubMed  Google Scholar 

  • Cohen SS (1998) A guide to the polyamines. Oxford University Press, Oxford

    Google Scholar 

  • Correa-Fiz AMF, Reyes-Palomares A, Ruiz-Pérez MV, Medina MA, Sánchez-Jiménez F (2009) Roles of biogenic amines in emergent and rare diseases. In: Dandrifosse G (ed) Biological aspects of biogenic amines, polyamines and conjugates. Transworld Research Network, Kerala, India, pp 399–419

    Google Scholar 

  • Cowen PJ (2008) Serotonin and depression: pathophysiological mechanism or marketing myth? Trends Pharmacol Sci 29:433–436

    Article  CAS  PubMed  Google Scholar 

  • Facchini A, Zanella B, Stefanelli C, Guarnieri C, Flamigni F (2003) Effect of green tea extract on the induction of ornithine decarboxylase and the activation of extracellular signal-regulated kinase in bladder carcinoma ECV304 cells. Nutr Cancer 47:104–110

    Article  CAS  PubMed  Google Scholar 

  • Fajardo I, Urdiales JL, Medina MA, Sánchez-Jiménez F (2001a) Effects of phorbol ester and dexamethasone treatment on histidine decarboxylase and ornithine decarboxylase in basophilic cells. Biochem Pharmacol 61:1101–1106

    Article  CAS  PubMed  Google Scholar 

  • Fajardo I, Urdiales JL, Paz JC, Chavarría T, Sánchez-Jiménez F, Medina MA (2001b) Histamine prevents polyamine accumulation in mouse C57.1 mast cell cultures. Eur J Biochem 268:768–773

    Article  CAS  PubMed  Google Scholar 

  • García-Faroldi G, Correa-Fiz F, Abrighach H, Berdasco M, Fraga MF, Esteller M, Urdiales JL, Sánchez-Jiménez F, Fajardo I (2009) Polyamines affect histamine synthesis during early stages of IL-3-induced bone marrow cell differentiation. J Cell Biochem 108:261–271

    Article  PubMed  Google Scholar 

  • Graham HN (1992) Green tea composition, consumption, and polyphenol chemistry. Prev Med 21:334–350

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Hussain T, Mukhtar H (2003) Molecular pathway for (-)-epigallocatechin-3-gallate-induced cell cycle arrest and apoptosis of human prostate carcinoma cells. Arch Biochem Biophys 410:177–185

    Article  CAS  PubMed  Google Scholar 

  • Ho YC, Yang SF, Peng CY, Chou MY, Chang YC (2007) Epigallocatechin-3-gallate inhibits the invasion of human oral cancer cells and decreases the productions of matrix metalloproteinases and urokinase-plasminogen activator. J Oral Pathol Med 36:588–593

    CAS  PubMed  Google Scholar 

  • Hong J, Smith TJ, Ho CT, August DA, Yang CS (2001) Effects of purified green and black tea polyphenols on cyclooxygenase- and lipoxygenase-dependent metabolism of arachidonic acid in human colon mucosa and colon tumor tissues. Biochem Pharmacol 62:1175–1183

    Article  CAS  PubMed  Google Scholar 

  • Jankun J, Selman SH, Swiercz R, Skrzypczak-Jankun E (1997) Why drinking green tea could prevent cancer. Nature 387:561

    Article  CAS  PubMed  Google Scholar 

  • Katiyar SK, Mukhtar H (1997) Tea antioxidants in cancer chemoprevention. J Cell Biochem Suppl 27:59–67

    Article  CAS  PubMed  Google Scholar 

  • Kuo PL, Lin CC (2003) Green tea constituent (-)-epigallocatechin-3-gallate inhibits Hep G2 cell proliferation and induces apoptosis through p53-dependent and Fas-mediated pathways. J Biomed Sci 10:219–227

    CAS  PubMed  Google Scholar 

  • Medina MA, Urdiales JL, Rodríguez-Caso C, Ramírez FJ, Sánchez-Jiménez F (2003) Biogenic amines and polyamines: similar biochemistry for different physiological missions and biomedical applications. Crit Rev Biochem Mol Biol 38:23–59

    Article  CAS  PubMed  Google Scholar 

  • Medina MA, Correa-Fiz F, Rodríguez-Caso C, Sánchez-Jiménez F (2005) A comprehensive view of polyamine and histamine metabolism to the light of new technologies. J Cell Mol Med 9:854–864

    Article  CAS  PubMed  Google Scholar 

  • Melgarejo E, Medina MA, Sánchez-Jiménez F, Botana LM, Dominguez M, Escribano L, Orfao A, Urdiales JL (2007) (-)-Epigallocatechin-3-gallate interferes with mast cell adhesiveness, migration and its potential to recruit monocytes. Cell Mol Life Sci 64:2690–2701

    Article  CAS  PubMed  Google Scholar 

  • Melgarejo E, Medina MA, Sánchez-Jiménez F, Urdiales JL (2009) Epigallocatechin gallate reduces human monocyte mobility and adhesion capabilities. Br J Pharmacol. doi:10.1111/j.1476-5381.2009.00452.x

  • Montañez R, Sánchez-Jiménez F, Aldana-Montes JF, Medina MA (2007) Polyamines: metabolism to systems biology and beyond. Amino Acids 33:283–289

    Article  PubMed  Google Scholar 

  • Montañez R, Rodríguez-Caso C, Sánchez-Jiménez F, Medina MA (2008) In silico analysis of arginine catabolism as a source of nitric oxide or polyamines in endothelial cells. Amino Acids 34:223–229

    Article  PubMed  Google Scholar 

  • Moya-García AA, Medina MA, Sánchez-Jiménez F (2005) Mammalian histidine decarboxylase: from structure to function. Bioessays 27:57–63

    Article  PubMed  Google Scholar 

  • Moya-García AA, Ruiz-Pernia J, Marti S, Sánchez-Jiménez F, Tunon I (2008) Analysis of the decarboxylation step in mammalian histidine decarboxylase. A computational study. J Biol Chem 283:12393–12401

    Article  PubMed  Google Scholar 

  • Moya-García AA, Pino-Ángeles A, Gil-Redondo R, Morreale A, Sanchez-Jimenez F (2009) Structural features of mammalian histidine decarboxylase reveal the basis for specific inhibition. Br J Pharmacol 157:4–13

    Article  PubMed  Google Scholar 

  • Nitta Y, Kikuzaki H, Ueno H (2007) Food components inhibiting recombinant human histidine decarboxylase activity. J Agric Food Chem 55:299–304

    Article  CAS  PubMed  Google Scholar 

  • Olmo MT, Urdiales JL, Pegg AE, Medina MA, Sanchez-Jimenez F (2000) In vitro study of proteolytic degradation of rat histidine decarboxylase. Eur J Biochem 267:1527–1531

    Article  CAS  PubMed  Google Scholar 

  • Olmo MT, Sánchez-Jiménez F, Medina MA, Hayashi H (2002) Spectroscopic analysis of recombinant rat histidine decarboxylase. J Biochem 132:433–439

    CAS  PubMed  Google Scholar 

  • Paul B, Hayes CS, Kim A, Athar M, Gilmour SK (2005) Elevated polyamines lead to selective induction of apoptosis and inhibition of tumorigenesis by (-)-epigallocatechin-3-gallate (EGCG) in ODC/Ras transgenic mice. Carcinogenesis 26:119–124

    Article  CAS  PubMed  Google Scholar 

  • Paz JC, Sánchez-Jiménez F, Medina MA (2001) Characterization of spermine uptake by Ehrlich tumour cells in culture. Amino Acids 21:271–279

    Article  CAS  PubMed  Google Scholar 

  • Peng G, Dixon DA, Muga SJ, Smith TJ, Wargovich MJ (2006) Green tea polyphenol (-)-epigallocatechin-3-gallate inhibits cyclooxygenase-2 expression in colon carcinogenesis. Mol Carcinog 45:309–319

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Caso C, Rodríguez-Agudo D, Moya-García AA, Fajardo I, Medina MA, Subramaniam V, Sánchez-Jiménez F (2003a) Local changes in the catalytic site of mammalian histidine decarboxylase can affect its global conformation and stability. Eur J Biochem 270:4376–4387

    Article  PubMed  Google Scholar 

  • Rodríguez-Caso C, Rodríguez-Agudo D, Sánchez-Jiménez F, Medina MA (2003b) Green tea epigallocatechin-3-gallate is an inhibitor of mammalian histidine decarboxylase. Cell Mol Life Sci 60:1760–1763

    Article  PubMed  Google Scholar 

  • Rodríguez-Caso C, Montañez R, Cascante M, Sánchez-Jiménez F, Medina MA (2006) Mathematical modeling of polyamine metabolism in mammals. J Biol Chem 281:21799–21812

    Article  PubMed  Google Scholar 

  • Roy AM, Baliga MS, Katiyar SK (2005) Epigallocatechin-3-gallate induces apoptosis in estrogen receptor-negative human breast carcinoma cells via modulation in protein expression of p53 and Bax and caspase-3 activation. Mol Cancer Ther 4:81–90

    CAS  PubMed  Google Scholar 

  • Tipoe GL, Leung TM, Hung MW, Fung ML (2007) Green tea polyphenols as an anti-oxidant and anti-inflammatory agent for cardiovascular protection. Cardiovasc Hematol Disord Drug Targets 7:135–144

    CAS  PubMed  Google Scholar 

  • Urdiales JL, Medina MA, Sánchez-Jiménez F (2001) Polyamine metabolism revisited. Eur J Gastroenterol Hepatol 13:1015–1019

    Article  CAS  PubMed  Google Scholar 

  • Wang YC, Bachrach U (2002) The specific anti-cancer activity of green tea (-)-epigallocatechin-3-gallate (EGCG). Amino Acids 22:131–143

    Article  PubMed  Google Scholar 

  • Wolter F, Turchanowa L, Stein J (2003) Resveratrol-induced modification of polyamine metabolism is accompanied by induction of c-Fos. Carcinogenesis 24:469–474

    Article  CAS  PubMed  Google Scholar 

  • Yamashita K, Suzuki Y, Matsui T, Yoshimaru T, Yamaki M, Suzuki-Karasaki M, Hayakawa S, Shimizu K (2000) Epigallocatechin gallate inhibits histamine release from rat basophilic leukemia (RBL-2H3) cells: role of tyrosine phosphorylation pathway. Biochem Biophys Res Commun 274:603–608

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The experimental work carried out by our group is supported by grants SAF 2008-02522 (Spanish Ministry of Science and Innovation), Fundación Ramón Areces, P07-CVI-02999 and group BIO-267 (Andalusian Government). The “CIBER de Enfermedades Raras” is an initiative of the ISCIII (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Ángel Medina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melgarejo, E., Urdiales, J.L., Sánchez-Jiménez, F. et al. Targeting polyamines and biogenic amines by green tea epigallocatechin-3-gallate. Amino Acids 38, 519–523 (2010). https://doi.org/10.1007/s00726-009-0411-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-009-0411-z

Keywords

Navigation