Skip to main content

Advertisement

Log in

Functional interactions among STIM1, Orai1 and TRPC1 on the activation of SOCs in HL-7702 cells

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

STIM1, Orai1 and TRPC1 are all reported to be important for store-operated Ca2+ entry (SOCE) in diverse cells. However, there is no evidence for the functional interaction of the three proteins in SOCE in human liver cells. The objective of this study is to determine whether they are involved in SOCE in normal human liver cells. Liposomal transfection method was used to increase expression levels of the three proteins in HL-7702 cells, a normal human liver cell line. Western blot and single cell RT–PCR were applied to evaluate transfection effectiveness. Changes in store-operated current (ISOC) and SOCE were investigated using whole-cell patch-clamp recording and calcium imaging. ISOC is detected in HL-7702 cells and it is inhibited either by 2-Aminoethoxydiphenyl borate (2-APB) or La3+. Overexpression of STIM1 or Orai1 alone did not induce any change in ISOC. TRPC1-transfection, however, caused approximate 2.5-fold increase in ISOC. A large increase (>10-fold) in ISOC emerged when both STIM1 and Orai1 were co-transfected into HL-7702 cells. Co-overexpression of STIM1 + TRPC1 also caused >10-fold increase in ISOC, and addition of Orai1 did not cause any further increase. In HL-7702 cells, TRPC1 and Orai1 take part in SOCE independently of each other. Functional interactions of STIM1 and Orai1 or TRPC1 contribute to ISOC activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

2-APB:

2-Aminoethoxydiphenyl borate

EDTA:

Ethylene diamine tetraacetic acid

EGFP:

Enhanced green fluorescence protein

EGTA:

Ethylene glycol tetraacetic acid

ER:

Endoplasmic reticulum

FBS:

Fetal bovine serum

ICRAC :

Ca2+ release-activated Ca2+ current

ISOC :

Store-operated current

PBS:

Phosphate-buffered saline

ROCs:

Receptor-operated channels

RT-PCR:

Reverse transcription-polymerase chain reaction

SCID:

Severe combined immunodeficiency

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

SOCE:

Store-operated Ca2+ entry

SOCs:

Store-operated channels

SR:

Sarcoplasmic reticulum

STIM1:

Stromal interacting molecular 1

Tg:

Thapsigargin

TRPC1:

Transient receptor potential canonical 1

VOCCs:

Voltage-operated Ca2+ channels

References

  • Albert AP, Saleh SN, Peppiatt-Wildman CM, Large WA (2007) Multiple activation mechanisms of store-operated TRPC channels in smooth muscle cells. J Physiol 583:25–36

    Article  CAS  PubMed  Google Scholar 

  • Aromataris EC, Roberts ML, Barritt GJ, Rychkov GY (2006) Glucagon activates Ca2+ and Cl channels in rat hepatocytes. J Physiol 573:611–625

    Article  CAS  PubMed  Google Scholar 

  • Aromataris EC, Castro J, Rychkov GY, Barritt GJ (2008) Store-operated Ca2+ channels and Stromal Interaction Molecule 1 (STIM1) are targets for the actions of bile acids on liver cells. Biochim Biophys Acta 1783:874–885

    Article  CAS  PubMed  Google Scholar 

  • Auld A, Chen J, Brereton HM, Wang YJ, Gregory RB, Barritt GJ (2000) Store-operated Ca2+ inflow in Reuber hepatoma cells is inhibited by voltage-operated Ca2+ channel antagonists and, in contrast to freshly isolated hepatocytes, does not require a pertussis toxin-sensitive trimeric GTP-binding protein. Biochim Biophys Acta 1497:11–26

    Article  CAS  PubMed  Google Scholar 

  • Barritt GJ (1999) Receptor activated Ca2+ inflow in animal cells: a variety of pathways tailored to meet different intracellular Ca2+ signaling requirements. Biochem J 337:153–169

    Article  CAS  PubMed  Google Scholar 

  • Barritt GJ, Parker JC, Wadsworth JC (1981) A kinetic analysis of the effects of adrenaline on calcium distribution in isolated rat liver parenchymal cells. J Physiol 312:29–55

    CAS  PubMed  Google Scholar 

  • Barritt GJ, Litjens TL, Castro J, Aromataris E, Rychkov GY (2009) Store-operated Ca2+ channels and microdomains of Ca2+ in liver cells. Clin Exp Pharmacol Physiol 36:77–83

    Article  CAS  PubMed  Google Scholar 

  • Brereton HM, Chen J, Rychkov G, Harland ML, Barritt GJ (2001) Maitotoxin activates an endogenous non-selective cation channel and is an effective initiator of the activation of the heterologously expressed hTRPC-1 (transient receptor potential) non-selective cation channel in H4-IIE liver cells. Biochim Biophys Acta 1540:107–126

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Barritt GJ (2003) Evidence that TRPC1 (transient receptor potential canonical 1) forms a Ca2+-permeable channel linked to the regulation of cell volume in liver cells obtained using small interfering RNA targeted against TRPC1. Biochem J 373:327–336

    Article  CAS  PubMed  Google Scholar 

  • Cheng KT, Liu X, Ong HL, Ambudkar IS (2008) Functional requirement for Orai1 in store-operated TRPC1-STIM1 channels. J Biol Chem 283:12935–12940

    Article  CAS  PubMed  Google Scholar 

  • El Boustany C, Bidaux G, Enfissi A, Delcourt P, Prevarskaya N, Capiod T (2008) Capacitative calcium entry and transient receptor potential canonical 6 expression control human hepatoma cell proliferation. Hepatology 47:2068–2077

    Article  CAS  PubMed  Google Scholar 

  • Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, Tanasa B, Hogan PG, Lewis RS, Daly M, Rao A (2006) A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441:179–185

    Article  CAS  PubMed  Google Scholar 

  • Gaspers LD, Thomas AP (2005) Calcium signaling in liver. Cell Calcium 38:329–342

    Article  CAS  PubMed  Google Scholar 

  • Graf J, Häussinger D (1996) Ion transport in hepatocytes: mechanisms and correlations to cell volume, hormone actions and metabolism. J Hepatol 24(Suppl 1):53–77

    CAS  PubMed  Google Scholar 

  • Huang GN, Zeng W, Kim JY, Yuan JP, Han L, Muallem S, Worley PF (2006) STIM1 carboxyl-terminus activates native SOC, I(crac) and TRPC1 channels. Nat Cell Biol 8:1003–1010

    Article  CAS  PubMed  Google Scholar 

  • Jardin I, Lopez JJ, Salido GM, Rosado JA (2008) Orai1 mediates the interaction between STIM1 and hTRPC1 and regulates the mode of activation of hTRPC1-forming Ca2+ channels. J Biol Chem 283:25296–25304

    Article  CAS  PubMed  Google Scholar 

  • Jiang JL, Yu MK, Chen ZN, Chan HC (2001) cGMP-regulated store-operated calcium entry in human hepatoma cells. Cell Biol Int 25:993–995

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Lu J, Xu P, Xie X, Chen L, Xu T (2007) Mapping the interacting domains of STIM1 and Orai1 in Ca2+ release-activated Ca2+ channel activation. J Biol Chem 282:29448–29456

    Article  CAS  PubMed  Google Scholar 

  • Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Ferrell JE Jr, Meyer T (2005) STIM is a Ca2+ sensor essential for Ca2+-store-depletion triggered Ca2+ influx. Curr Biol 15:1235–1241

    Article  CAS  PubMed  Google Scholar 

  • Nieuwenhuijs VB, De Bruijn MT, Padbury RT, Barritt GJ (2006) Hepatic ischemia-reperfusion injury: roles of Ca2+ and other intracellular mediators of impaired bile flow and hepatocyte damage. Dig Dis Sci 51:1087–1102

    Article  CAS  PubMed  Google Scholar 

  • Ong HL, Cheng KT, Liu X, Bandyopadhyay BC, Paria BC, Soboloff J, Pani B, Gwack Y, Srikanth S, Singh BB, Gill DL, Ambudkar IS (2007) Dynamic assembly of TRPC1-STIM1-Orai1 ternary complex is involved in store-operated calcium influx. Evidence for similarities in store-operated and calcium release-activated calcium channel components. J Biol Chem 282:9105–9116

    Article  CAS  PubMed  Google Scholar 

  • Parekh AB (2006) On the activation mechanism of store-operated calcium channels. Pflugers Arch 453:303–311

    Article  CAS  PubMed  Google Scholar 

  • Parekh AB, Putney JW Jr (2005) Store-operated calcium channels. Physiol Rev 85:757–810

    Article  CAS  PubMed  Google Scholar 

  • Pedersen SF, Owsianik G, Nilius B (2005) TRP channels: an overview. Cell Calcium 38:233–252

    Article  CAS  PubMed  Google Scholar 

  • Peinelt C, Vig M, Koomoa DL, Beck A, Nadler MJ, Koblan-Huberson M, Lis A, Fleig A, Penner R, Kinet JP (2006) Amplification of CRAC current by STIM1 and CRACM1 (Orai1). Nat Cell Biol 8:771–773

    Article  CAS  PubMed  Google Scholar 

  • Prakriya M, Feske S, Gwack Y, Srikanth S, Rao A, Hogan PG (2006) Orai1 is an essential pore subunit of the CRAC channel. Nature 443:230–233

    Article  CAS  PubMed  Google Scholar 

  • Putney JW Jr (1986) A model for receptor-regulated calcium entry. Cell Calcium 7:1–12

    Article  CAS  PubMed  Google Scholar 

  • Rabe H, Ritz HJ, Jeserich G (1998) Voltage-gated potassium channels of schwann cells from trout lateral line nerve: a combined electrophysiological and molecular characterization. Gila 23:329–338

    Article  CAS  Google Scholar 

  • Rao JN, Platoshyn O, Golovina VA, Liu L, Zou T, Marasa BS, Turner DJ, Yuan JX, Wang JY (2006) TRPC1 functions as a store-operated Ca2+ channel in intestinal epithelial cells and regulates early mucosal restitution after wounding. Am J Physiol Gastrointest Liver Physiol 290:G782–G792

    Article  CAS  PubMed  Google Scholar 

  • Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, Safrina O, Kozak JA, Wagner SL, Cahalan MD, Veliçelebi G, Stauderman KA (2005) STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 69:435–445

    Article  Google Scholar 

  • Rychkov G, Brereton HM, Harland ML, Barritt GJ (2001) Plasma membrane Ca2+ release-activated Ca2+ channels with a high selectivity for Ca2+ identified by patch-clamp recording in rat liver cells. Hepatology 33:938–947

    Article  CAS  PubMed  Google Scholar 

  • Saleh SN, Albert AP, Peppiatt CM, Large WA (2006) Angiotensin II activates two cation conductances with distinct TRPC1 and TRPC6 channel properties in rabbit mesenteric artery myocytes. J Physiol 577:479–495

    Article  CAS  PubMed  Google Scholar 

  • Saleh SN, Albert AP, Peppiatt-Wildman CM, Large WA (2008) Diverse properties of store-operated TRPC channels activated by protein kinase C in vascular myocytes. J Physiol 586:2463–2476

    Article  CAS  PubMed  Google Scholar 

  • Smyth JT, Dehaven WI, Jones BF, Mercer JC, Trebak M, Vazquez G, Putney JW Jr (2006) Emerging perspectives in store-operated Ca2+ entry: roles of Orai, Stim and TRP. Biochim Biophys Acta 1763:1147–1160

    Article  CAS  PubMed  Google Scholar 

  • Soboloff J, Spassova MA, Tang XD, Hewavitharana T, Xu W, Gill DL (2006) Orai1 and STIM reconstitute store-operated calcium channel function. J Biol Chem 281:20661–20665

    Article  CAS  PubMed  Google Scholar 

  • Spassova MA, Soboloff J, He LP, Xu W, Dziadek MA, Gill DL (2006) STIM1 has a plasma membrane role in the activation of store-operated Ca2+ channels. Proc Natl Acad Sci USA 103:4040–4045

    Article  CAS  PubMed  Google Scholar 

  • Takahashi Y, Watanabe H, Murakami M, Ohba T, Radovanovic M, Ono K, Iijima T, Ito H (2007) Involvement of transient receptor potential canonical 1 (TRPC1) in angiotensin II-induced vascular smooth muscle cell hypertrophy. Atherosclerosis 195:287–296

    Article  CAS  PubMed  Google Scholar 

  • Teoh NC, Farrell GC (2003) Hepatic ischemia reperfusion injury: pathogenic mechanisms and basis for hepatoprotection. J Gastroenterol Hepatol 18:891–902

    Article  CAS  PubMed  Google Scholar 

  • Vig M, Peinelt C, Beck A, Koomoa DL, Rabah D, Koblan-Huberson M, Kraft S, Turner H, Fleig A, Penner R, Kinet JP (2006) CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312:1220–1223

    Article  CAS  PubMed  Google Scholar 

  • Zhang SL, Yu Y, Roos J, Kozak JA, Deerinck TJ, Ellisman MH, Stauderman KA, Cahalan MD (2005) STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437:902–905

    Article  CAS  PubMed  Google Scholar 

  • Zhang SL, Yeromin AV, Zhang XH, Yu Y, Safrina O, Penna A, Roos J, Stauderman KA, Cahalan MD (2006) Genome-wide RNAi screen of Ca2+ influx identifies genes that regulate Ca2+ release-activated Ca2+ channel activity. Proc Natl Acad Sci USA 103:9357–9362

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Jiang M, Peyton M, Boulay G, Hurst R, Stefani E, Birnbaumer L (1996) Trp, a novel mammalian gene family essential for agonist-activated capacitative Ca2+ entry. Cell 85:661–671

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We specially thank Prof. Tao Xu (Institute of Biophysics, Chinese Academy of Sciences, China) for kindly providing STIM1-mORANGE and Orai1-EGFP plasmids. We thank Prof. Michael Xi Zhu (Department of Neuroscience and Center for Molecular Neurobiology, Ohio State University, USA), Dr. Lyn Trapuzzano and Dr. Changqing Xu (Blanchette Rockefeller Neurosciences Institute, West Virginia University, USA), for critical reading of the manuscript. This work was financially supported by the National Science Foundation of China (Grants 30270532 and 30670744) and Tsinghua-Yue-Yuen Medical Science Foundation (No. 20240000531 and No. 20240000547) to ZM Zhang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zong-Ming Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, ZY., Pan, LJ. & Zhang, ZM. Functional interactions among STIM1, Orai1 and TRPC1 on the activation of SOCs in HL-7702 cells. Amino Acids 39, 195–204 (2010). https://doi.org/10.1007/s00726-009-0398-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-009-0398-5

Keywords

Navigation