Skip to main content

Advertisement

Log in

Restriction factors of retroviral replication: the example of Tripartite Motif (TRIM) protein 5α and 22

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Viral tropism, replication, and pathogenesis are determined by multiple interactions between the pathogen and the host. In the case of retroviruses, and in particular, the human immunodeficiency virus, the specific interaction of the envelope protein with the host receptors and co-receptors is essential to gain entry in the cells. After entry, the success of retroviruses to complete their life cycle depends on a complex interplay between the virus and host proteins. Indeed, the cell environment is endowed with a number of factors that actively block distinct stage(s) in the microbial life cycle. Among these restriction factors, Tripartite Motif-5α (TRIM5α) has been extensively studied; however, other TRIM family members have been demonstrated to be anti-retroviral effector proteins. This article reviews, in particular, the current knowledge on the anti-retroviral effects of TRIM5α and TRIM22.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Barr SD, Smiley JR, Bushman FD (2008) The interferon response inhibits HIV particle production by induction of TRIM22. PLoS Pathog 4:e1000007

    Article  PubMed  Google Scholar 

  • Berthoux L, Sebastian S, Sokolskaja E, Luban J (2005) Cyclophilin A is required for TRIM5{alpha}-mediated resistance to HIV-1 in Old World monkey cells. Proc Natl Acad Sci USA 102:14849–14853

    Article  CAS  PubMed  Google Scholar 

  • Besnier C, Takeuchi Y, Towers G (2002) Restriction of lentivirus in monkeys. Proc Natl Acad Sci USA 99:11920–11925

    Article  CAS  PubMed  Google Scholar 

  • Besnier C, Ylinen L, Strange B, Lister A, Takeuchi Y, Goff SP, Towers GJ (2003) Characterization of murine leukemia virus restriction in mammals. J Virol 77:13403–13406

    Article  CAS  PubMed  Google Scholar 

  • Best S, Le Tissier P, Towers G, Stoye JP (1996) Positional cloning of the mouse retrovirus restriction gene Fv1. Nature 382:826–829

    Article  CAS  PubMed  Google Scholar 

  • Borden KL (1998) RING fingers and B-boxes: zinc-binding protein-protein interaction domains. Biochem Cell Biol 76:351–358

    Article  CAS  PubMed  Google Scholar 

  • Bouazzaoui A, Kreutz M, Eisert V, Dinauer N, Heinzelmann A, Hallenberger S, Strayle J, Walker R, Rubsamen-Waigmann H, Andreesen R, von Briesen H (2006) Stimulated trans-acting factor of 50 kDa (Staf50) inhibits HIV-1 replication in human monocyte-derived macrophages. Virology 356:79–94

    Article  CAS  PubMed  Google Scholar 

  • Boutell C, Everett RD (2003) The herpes simplex virus type 1 (HSV-1) regulatory protein ICP0 interacts with and Ubiquitinates p53. J Biol Chem 278:36596–36602

    Article  CAS  PubMed  Google Scholar 

  • Braaten D, Franke EK, Luban J (1996) Cyclophilin A is required for an early step in the life cycle of human immunodeficiency virus type 1 before the initiation of reverse transcription. J Virol 70:3551–3560

    CAS  PubMed  Google Scholar 

  • Campbell EM, Dodding MP, Yap MW, Wu X, Gallois-Montbrun S, Malim MH, Stoye JP, Hope TJ (2007) TRIM5 alpha cytoplasmic bodies are highly dynamic structures. Mol Biol Cell 18:2102–2111

    Article  CAS  PubMed  Google Scholar 

  • Carthagena L, Bergamaschi A, Luna JM, David A, Uchil PD, Margottin-Goguet F, Mothes W, Hazan U, Transy C, Pancino G, Nisole S (2009) Human TRIM gene expression in response to interferons. PLoS One 4:e4894

    Article  PubMed  Google Scholar 

  • Cowan S, Hatziioannou T, Cunningham T, Muesing MA, Gottlinger HG, Bieniasz PD (2002) Cellular inhibitors with Fv1-like activity restrict human and simian immunodeficiency virus tropism. Proc Natl Acad Sci USA 99:11914–11919

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Griffero F, Kar A, Perron M, Xiang SH, Javanbakht H, Li X, Sodroski J (2007) Modulation of retroviral restriction and proteasome inhibitor-resistant turnover by changes in the TRIM5alpha B-box 2 domain. J Virol 81:10362–10378

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Griffero F, Qin XR, Hayashi F, Kigawa T, Finzi A, Sarnak Z, Lienlaf M, Yokoyama S, Sodroski J (2009) A B-box 2 surface patch important for TRIM5{alpha} self-association, capsid-binding avidity and retrovirus restriction. J Virol 83:10737–10751

    Article  CAS  PubMed  Google Scholar 

  • Duan Z, Gao B, Xu W, Xiong S (2008) Identification of TRIM22 as a RING finger E3 ubiquitin ligase. Biochem Biophys Res Commun 374:502–506

    Article  CAS  PubMed  Google Scholar 

  • Eldin P, Papon L, Oteiza A, Brocchi E, Lawson TG, Mechti N (2009) TRIM22 E3 ubiquitin ligase activity is required to mediate antiviral activity against encephalomyocarditis virus. J Gen Virol 90:536–545

    Article  CAS  PubMed  Google Scholar 

  • Everett RD, Chelbi-Alix MK (2007) PML and PML nuclear bodies: implications in antiviral defence. Biochimie 89:819–830

    Article  CAS  PubMed  Google Scholar 

  • Franke EK, Yuan HE, Luban J (1994) Specific incorporation of cyclophilin A into HIV-1 virions. Nature 372:359–362

    Article  CAS  PubMed  Google Scholar 

  • Fridell RA, Harding LS, Bogerd HP, Cullen BR (1995) Identification of a novel human zinc finger protein that specifically interacts with the activation domain of lentiviral Tat proteins. Virology 209:347–357

    Google Scholar 

  • Friend C (1957) Cell-free transmission in adult Swiss mice of a disease having the character of a leukemia. J Exp Med 105:307–318

    Article  CAS  PubMed  Google Scholar 

  • Gack MU, Shin YC, Joo CH, Urano T, Liang C, Sun L, Takeuchi O, Akira S, Chen Z, Inoue S, Jung JU (2007) TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446:916–920

    Article  CAS  PubMed  Google Scholar 

  • Gao B, Duan Z, Xu W, Xiong S (2009) Tripartite motif-containing 22 inhibits the activity of hepatitis B virus core promoter, which is dependent on nuclear-located RING domain. Hepatology 50:424–433

    Article  CAS  PubMed  Google Scholar 

  • Gardner MB, Luciw PA (1989) Animal models of AIDS. Faseb J 3:2593–2606

    CAS  PubMed  Google Scholar 

  • Harada F, Peters GG, Dahlberg JE (1979) The primer tRNA for Moloney murine leukemia virus DNA synthesis. Nucleotide sequence and aminoacylation of tRNAPro. J Biol Chem 254:10979–10985

    CAS  PubMed  Google Scholar 

  • Hartley JW, Rowe WP, Huebner RJ (1970) Host-range restrictions of murine leukemia viruses in mouse embryo cell cultures. J Virol 5:221–225

    CAS  PubMed  Google Scholar 

  • Hatziioannou T, Perez-Caballero D, Yang A, Cowan S, Bieniasz PD (2004) Retrovirus resistance factors Ref1 and Lv1 are species-specific variants of TRIM5alpha. Proc Natl Acad Sci USA 101:10774–10779

    Article  CAS  PubMed  Google Scholar 

  • Herr AM, Dressel R, Walter L (2009) Different subcellular localisations of TRIM22 suggest species-specific function. Immunogenetics 61:271–280

    Article  CAS  PubMed  Google Scholar 

  • Jang JH (2004) FIGC, a novel FGF-induced ubiquitin-protein ligase in gastric cancers. FEBS Lett 578:21–25

    Article  CAS  PubMed  Google Scholar 

  • Javanbakht H, Diaz-Griffero F, Stremlau M, Si Z, Sodroski J (2005) The contribution of RING and B-box 2 domains to retroviral restriction mediated by monkey TRIM5alpha. J Biol Chem 280:26933–26940

    Article  CAS  PubMed  Google Scholar 

  • Joazeiro CA, Wing SS, Huang H, Leverson JD, Hunter T, Liu YC (1999) The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science 286:309–312

    Article  CAS  PubMed  Google Scholar 

  • Jones JM, Gellert M (2003) Autoubiquitylation of the V(D)J recombinase protein RAG1. Proc Natl Acad Sci USA 100:15446–15451

    Article  CAS  PubMed  Google Scholar 

  • Keckesova Z, Ylinen LM, Towers GJ (2004) The human and African green monkey TRIM5alpha genes encode Ref1 and Lv1 retroviral restriction factor activities. Proc Natl Acad Sci USA 101:10780–10785

    Article  CAS  PubMed  Google Scholar 

  • Le Douarin B, Nielsen AL, Garnier JM, Ichinose H, Jeanmougin F, Losson R, Chambon P (1996) A possible involvement of TIF1 alpha and TIF1 beta in the epigenetic control of transcription by nuclear receptors. EMBO J 15:6701–6715

    CAS  PubMed  Google Scholar 

  • Li X, Gold B, O’HUigin C, Diaz-Griffero F, Song B, Si Z, Li Y, Yuan W, Stremlau M, Mische C, Javanbakht H, Scally M, Winkler C, Dean M, Sodroski J (2007) Unique features of TRIM5alpha among closely related human TRIM family members. Virology 360:419–433

    Article  CAS  PubMed  Google Scholar 

  • Lilly F (1967) Susceptibility to two strains of Friend leukemia virus in mice. Science 155:461–462

    Article  CAS  PubMed  Google Scholar 

  • Lin TY, Emerman M (2006) Cyclophilin A interacts with diverse lentiviral capsids. Retrovirology 3:70

    Article  PubMed  Google Scholar 

  • Lorick KL, Jensen JP, Fang S, Ong AM, Hatakeyama S, Weissman AM (1999) RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc Natl Acad Sci USA 96:11364–11369

    Article  CAS  PubMed  Google Scholar 

  • Luban J (2007) Cyclophilin A, TRIM5, and resistance to human immunodeficiency virus type 1 infection. J Virol 81:1054–1061

    Article  CAS  PubMed  Google Scholar 

  • Luban J, Bossolt KL, Franke EK, Kalpana GV, Goff SP (1993) Human immunodeficiency virus type 1 Gag protein binds to cyclophilins A and B. Cell 73:1067–1078

    Article  CAS  PubMed  Google Scholar 

  • Meroni G, Diez-Roux G (2005) TRIM/RBCC, a novel class of ‘single protein RING finger’ E3 ubiquitin ligases. Bioessays 27:1147–1157

    Article  CAS  PubMed  Google Scholar 

  • Meyer M, Gaudieri S, Rhodes DA, Trowsdale J (2003) Cluster of TRIM genes in the human MHC class I region sharing the B30.2 domain. Tissue Antigens 61:63–71

    Article  CAS  PubMed  Google Scholar 

  • Mische CC, Javanbakht H, Song B, Diaz-Griffero F, Stremlau M, Strack B, Si Z, Sodroski J (2005) Retroviral restriction factor TRIM5alpha is a trimer. J Virol 79:14446–14450

    Article  CAS  PubMed  Google Scholar 

  • Munk C, Brandt SM, Lucero G, Landau NR (2002) A dominant block to HIV-1 replication at reverse transcription in simian cells. Proc Natl Acad Sci USA 99:13843–13848

    Article  CAS  PubMed  Google Scholar 

  • Nisole S, Stoye JP, Saib A (2005) TRIM family proteins: retroviral restriction and antiviral defence. Nat Rev Microbiol 3:799–808

    Article  CAS  PubMed  Google Scholar 

  • Obad S, Brunnstrom H, Vallon-Christersson J, Borg A, Drott K, Gullberg U (2004) Staf50 is a novel p53 target gene conferring reduced clonogenic growth of leukemic U-937 cells. Oncogene 23:4050–4059

    Article  CAS  PubMed  Google Scholar 

  • Obad S, Olofsson T, Mechti N, Gullberg U, Drott K (2007) Expression of the IFN-inducible p53-target gene TRIM22 is down-regulated during erythroid differentiation of human bone marrow. Leuk Res 31:995–1001

    Article  CAS  PubMed  Google Scholar 

  • Oshiumi H, Matsumoto M, Hatakeyama S, Seya T (2009) Riplet/RNF135, a RING finger protein, ubiquitinates RIG-I to promote interferon-beta induction during the early phase of viral infection. J Biol Chem 284:807–817

    Article  CAS  PubMed  Google Scholar 

  • Ozato K, Shin DM, Chang TH, Morse HC 3rd (2008) TRIM family proteins and their emerging roles in innate immunity. Nat Rev Immunol 8:849–860

    Article  CAS  PubMed  Google Scholar 

  • Passerini LD, Keckesova Z, Towers GJ (2006) Retroviral restriction factors Fv1 and TRIM5alpha act independently and can compete for incoming virus before reverse transcription. J Virol 80:2100–2105

    Article  CAS  PubMed  Google Scholar 

  • Perez-Caballero D, Hatziioannou T, Yang A, Cowan S, Bieniasz PD (2005a) Human tripartite motif 5alpha domains responsible for retrovirus restriction activity and specificity. J Virol 79:8969–8978

    Article  CAS  PubMed  Google Scholar 

  • Perez-Caballero D, Hatziioannou T, Zhang F, Cowan S, Bieniasz PD (2005b) Restriction of human immunodeficiency virus type 1 by TRIM-CypA occurs with rapid kinetics and independently of cytoplasmic bodies, ubiquitin, and proteasome activity. J Virol 79:15567–15572

    Article  CAS  PubMed  Google Scholar 

  • Perron MJ, Stremlau M, Song B, Ulm W, Mulligan RC, Sodroski J (2004) TRIM5alpha mediates the postentry block to N-tropic murine leukemia viruses in human cells. Proc Natl Acad Sci USA 101:11827–11832

    Article  CAS  PubMed  Google Scholar 

  • Perron MJ, Stremlau M, Sodroski J (2006) Two surface-exposed elements of the B30.2/SPRY domain as potency determinants of N-tropic murine leukemia virus restriction by human TRIM5alpha. J Virol 80:5631–5636

    Article  CAS  PubMed  Google Scholar 

  • Pincus T, Rowe WP, Lilly F (1971) A major genetic locus affecting resistance to infection with murine leukemia viruses. II. Apparent identity to a major locus described for resistance to friend murine leukemia virus. J Exp Med 133:1234–1241

    Article  CAS  PubMed  Google Scholar 

  • Ponting C, Schultz J, Bork P (1997) SPRY domains in ryanodine receptors (Ca(2+)-release channels). Trends Biochem Sci 22:193–194

    Article  CAS  PubMed  Google Scholar 

  • Reddy BA, Etkin LD, Freemont PS (1992) A novel zinc finger coiled-coil domain in a family of nuclear proteins. Trends Biochem Sci 17:344–345

    Article  CAS  PubMed  Google Scholar 

  • Reymond A, Meroni G, Fantozzi A, Merla G, Cairo S, Luzi L, Riganelli D, Zanaria E, Messali S, Cainarca S, Guffanti A, Minucci S, Pelicci PG, Ballabio A (2001) The tripartite motif family identifies cell compartments. EMBO J 20:2140–2151

    Article  CAS  PubMed  Google Scholar 

  • Rhodes DA, de Bono B, Trowsdale J (2005) Relationship between SPRY and B30.2 protein domains. Evolution of a component of immune defence? Immunology 116:411–417

    CAS  PubMed  Google Scholar 

  • Sakuma R, Noser JA, Ohmine S, Ikeda Y (2007) Rhesus monkey TRIM5alpha restricts HIV-1 production through rapid degradation of viral Gag polyproteins. Nat Med 13:631–635

    Article  CAS  PubMed  Google Scholar 

  • Sardiello M, Cairo S, Fontanella B, Ballabio A, Meroni G (2008) Genomic analysis of the TRIM family reveals two groups of genes with distinct evolutionary properties. BMC Evol Biol 8:225

    Article  PubMed  Google Scholar 

  • Sawyer SL, Wu LI, Emerman M, Malik HS (2005) Positive selection of primate TRIM5alpha identifies a critical species-specific retroviral restriction domain. Proc Natl Acad Sci USA 102:2832–2837

    Article  CAS  PubMed  Google Scholar 

  • Sawyer SL, Emerman M, Malik HS (2007) Discordant evolution of the adjacent antiretroviral genes TRIM22 and TRIM5 in mammals. PLoS Pathog 3:e197

    Article  PubMed  Google Scholar 

  • Sayah DM, Sokolskaja E, Berthoux L, Luban J (2004) Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1. Nature 430:569–573

    Article  CAS  PubMed  Google Scholar 

  • Schultz DC, Ayyanathan K, Negorev D, Maul GG, Rauscher FJ 3rd (2002) SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev 16:919–932

    Article  CAS  PubMed  Google Scholar 

  • Sebastian S, Luban J (2005) TRIM5alpha selectively binds a restriction-sensitive retroviral capsid. Retrovirology 2:40

    Article  PubMed  Google Scholar 

  • Sebastian S, Grutter C, de Castillia CS, Pertel T, Olivari S, Grutter MG, Luban J (2009) An invariant surface patch on the TRIM5alpha PRYSPRY domain is required for retroviral restriction but dispensable for capsid binding. J Virol 83:3365–3373

    Article  CAS  PubMed  Google Scholar 

  • Sewram S, Singh R, Kormuth E, Werner L, Mlisana K, Karim SS, Ndung’u T (2009) Human TRIM5alpha expression levels and reduced susceptibility to HIV-1 infection. J Infect Dis 199:1657–1663

    Article  CAS  PubMed  Google Scholar 

  • Shi M, Deng W, Bi E, Mao K, Ji Y, Lin G, Wu X, Tao Z, Li Z, Cai X, Sun S, Xiang C, Sun B (2008) TRIM30 alpha negatively regulates TLR-mediated NF-kappa B activation by targeting TAB 2 and TAB 3 for degradation. Nat Immunol 9:369–377

    Article  CAS  PubMed  Google Scholar 

  • Short KM, Cox TC (2006) Subclassification of the RBCC/TRIM superfamily reveals a novel motif necessary for microtubule binding. J Biol Chem 281:8970–8980

    Article  CAS  PubMed  Google Scholar 

  • Sivaramakrishnan G, Sun Y, Rajmohan R, Lin VC (2009a) B30.2/SPRY domain in tripartite motif-containing 22 is essential for the formation of distinct nuclear bodies. FEBS Lett 583:2093–2099

    Article  CAS  PubMed  Google Scholar 

  • Sivaramakrishnan G, Sun Y, Tan SK, Lin VC (2009b) Dynamic localization of tripartite motif-containing 22 in nuclear and nucleolar bodies. Exp Cell Res 315:1521–1532

    Article  CAS  PubMed  Google Scholar 

  • Sokolskaja E, Berthoux L, Luban J (2006) Cyclophilin A and TRIM5alpha independently regulate human immunodeficiency virus type 1 infectivity in human cells. J Virol 80:2855–2862

    Article  CAS  PubMed  Google Scholar 

  • Song B, Diaz-Griffero F, Park DH, Rogers T, Stremlau M, Sodroski J (2005) TRIM5alpha association with cytoplasmic bodies is not required for antiretroviral activity. Virology 343:201–211

    Article  CAS  PubMed  Google Scholar 

  • Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissier P, Sodroski J (2004) The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys. Nature 427:848–853

    Article  CAS  PubMed  Google Scholar 

  • Stremlau M, Perron M, Welikala S, Sodroski J (2005) Species-specific variation in the B30.2(SPRY) domain of TRIM5alpha determines the potency of human immunodeficiency virus restriction. J Virol 79:3139–3145

    Article  CAS  PubMed  Google Scholar 

  • Stremlau M, Perron M, Lee M, Li Y, Song B, Javanbakht H, Diaz-Griffero F, Anderson DJ, Sundquist WI, Sodroski J (2006) Specific recognition and accelerated uncoating of retroviral capsids by the TRIM5alpha restriction factor. Proc Natl Acad Sci USA 103:5514–5519

    Article  CAS  PubMed  Google Scholar 

  • Tissot C, Mechti N (1995) Molecular cloning of a new interferon-induced factor that represses human immunodeficiency virus type 1 long terminal repeat expression. J Biol Chem 270:14891–14898

    Article  CAS  PubMed  Google Scholar 

  • Tissot C, Taviaux SA, Diriong S, Mechti N (1996) Localization of Staf50, a member of the Ring finger family, to 11p15 by fluorescence in situ hybridization. Genomics 34:151–153

    Article  CAS  PubMed  Google Scholar 

  • Towers G, Bock M, Martin S, Takeuchi Y, Stoye JP, Danos O (2000) A conserved mechanism of retrovirus restriction in mammals. Proc Natl Acad Sci USA 97:12295–12299

    Article  CAS  PubMed  Google Scholar 

  • Turelli P, Doucas V, Craig E, Mangeat B, Klages N, Evans R, Kalpana G, Trono D (2001) Cytoplasmic recruitment of INI1 and PML on incoming HIV preintegration complexes: interference with early steps of viral replication. Mol Cell 7:1245–1254

    Google Scholar 

  • Uchil PD, Quinlan BD, Chan WT, Luna JM, Mothes W (2008) TRIM E3 ligases interfere with early and late stages of the retroviral life cycle. PLoS Pathog 4:e16

    Article  PubMed  Google Scholar 

  • Vichi A, Payne DM, Pacheco-Rodriguez G, Moss J, Vaughan M (2005) E3 ubiquitin ligase activity of the trifunctional ARD1 (ADP-ribosylation factor domain protein 1). Proc Natl Acad Sci USA 102:1945–1950

    Article  CAS  PubMed  Google Scholar 

  • Virgen CA, Kratovac Z, Bieniasz PD, Hatziioannou T (2008) Independent genesis of chimeric TRIM5-cyclophilin proteins in two primate species. Proc Natl Acad Sci USA 105:3563–3568

    Article  CAS  PubMed  Google Scholar 

  • Wilson SJ, Webb BL, Ylinen LM, Verschoor E, Heeney JL, Towers GJ (2008) Independent evolution of an antiviral TRIMCyp in rhesus macaques. Proc Natl Acad Sci USA 105:3557–3562

    Article  CAS  PubMed  Google Scholar 

  • Wolf D, Goff SP (2007) TRIM28 mediates primer binding site-targeted silencing of murine leukemia virus in embryonic cells. Cell 131:46–57

    Article  CAS  PubMed  Google Scholar 

  • Wolf D, Goff SP (2009) Embryonic stem cells use ZFP809 to silence retroviral DNAs. Nature 458:1201–1204

    Article  CAS  PubMed  Google Scholar 

  • Wolf D, Hug K, Goff SP (2008) TRIM28 mediates primer binding site-targeted silencing of Lys1, 2 tRNA-utilizing retroviruses in embryonic cells. Proc Natl Acad Sci USA 105:12521–12526

    Article  CAS  PubMed  Google Scholar 

  • Woo JS, Imm JH, Min CK, Kim KJ, Cha SS, Oh BH (2006a) Structural and functional insights into the B30.2/SPRY domain. EMBO J 25:1353–1363

    Article  CAS  PubMed  Google Scholar 

  • Woo JS, Suh HY, Park SY, Oh BH (2006b) Structural basis for protein recognition by B30.2/SPRY domains. Mol Cell 24:967–976

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi K, Wada K, Tanji K, Tanaka M, Kamitani T (2008) Ubiquitination of E3 ubiquitin ligase TRIM5 alpha and its potential role. FEBS J 275:1540–1555

    Article  CAS  PubMed  Google Scholar 

  • Yap MW, Nisole S, Lynch C, Stoye JP (2004) Trim5alpha protein restricts both HIV-1 and murine leukemia virus. Proc Natl Acad Sci USA 101:10786–10791

    Article  CAS  PubMed  Google Scholar 

  • Yap MW, Nisole S, Stoye JP (2005) A single amino acid change in the SPRY domain of human Trim5alpha leads to HIV-1 restriction. Curr Biol 15:73–78

    Article  CAS  PubMed  Google Scholar 

  • Yoshimi R, Chang TH, Wang H, Atsumi T, Morse HC 3rd, Ozato K (2009) Gene disruption study reveals a nonredundant role for TRIM21/Ro52 in NF-kappaB-dependent cytokine expression in fibroblasts. J Immunol 182:7527–7538

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Hatziioannou T, Perez-Caballero D, Derse D, Bieniasz PD (2006) Antiretroviral potential of human tripartite motif-5 and related proteins. Virology 353:396–409

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Perez-Caballero D, Hatziioannou T, Bieniasz PD (2008) No effect of endogenous TRIM5alpha on HIV-1 production. Nat Med 14:235–236 (author reply 236–238)

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Guido Poli for critical reading of the manuscript. This study was supported in part by the grant 2008-2230 from Fondazione CARIPLO, Milano, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Vicenzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kajaste-Rudnitski, A., Pultrone, C., Marzetta, F. et al. Restriction factors of retroviral replication: the example of Tripartite Motif (TRIM) protein 5α and 22. Amino Acids 39, 1–9 (2010). https://doi.org/10.1007/s00726-009-0393-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-009-0393-x

Keywords

Navigation