Skip to main content
Log in

Structural analysis of the complex between calmodulin and full-length myelin basic protein, an intrinsically disordered molecule

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

An Erratum to this article was published on 04 May 2010

Abstract

Myelin basic protein (MBP) is present between the cytoplasmic leaflets of the compact myelin membrane in both the peripheral and central nervous systems, and characterized to be intrinsically disordered in solution. One of the best-characterized protein ligands for MBP is calmodulin (CaM), a highly acidic calcium sensor. We pulled down MBP from human brain white matter as the major calcium-dependent CaM-binding protein. We then used full-length brain MBP, and a peptide from rodent MBP, to structurally characterize the MBP–CaM complex in solution by small-angle X-ray scattering, NMR spectroscopy, synchrotron radiation circular dichroism spectroscopy, and size exclusion chromatography. We determined 3D structures for the full-length protein–protein complex at different stoichiometries and detect ligand-induced folding of MBP. We also obtained thermodynamic data for the two CaM-binding sites of MBP, indicating that CaM does not collapse upon binding to MBP, and show that CaM and MBP colocalize in myelin sheaths. In addition, we analyzed the post-translational modifications of rat brain MBP, identifying a novel MBP modification, glucosylation. Our results provide a detailed picture of the MBP–CaM interaction, including a 3D model of the complex between full-length proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CaM:

Calmodulin

MBP:

Myelin basic protein

MPE:

Myelin protein extract

SAXS:

Small-angle X-ray scattering

bMBP:

Bovine MBP

pMBP:

Porcine MBP

mMBP:

Mouse MBP

SRCD:

Synchrotron radiation circular dichroism spectroscopy

PTM:

Post-translational modification

3DE:

3-Dimensional electrophoresis

IDP:

Intrinsically disordered protein

SC:

Schwann cell

DRG:

Dorsal root ganglion

MM:

Molecular mass

SPR:

Surface plasmon resonance

ITC:

Isothermal titration calorimetry

PNS:

Peripheral nervous system

CNS:

Central nervous system

RT:

Room temperature

FCS:

Fetal calf serum

SL:

Schmidt–Lanterman incisure

CM:

Compact myelin

C p :

Heat capacity

References

  • Ahmed MA, Bamm VV, Shi L, Steiner-Mosonyi M, Dawson JF, Brown L, Harauz G, Ladizhansky V (2009) Induced secondary structure and polymorphism in an intrinsically disordered structural linker of the CNS: solid-state NMR and FTIR spectroscopy of myelin basic protein bound to actin. Biophys J 96:180–191

    Article  CAS  PubMed  Google Scholar 

  • Arbuzova A, Murray D, McLaughlin S (1998) MARCKS, membranes, and calmodulin: kinetics of their interaction. Biochim Biophys Acta 1376:369–379

    CAS  PubMed  Google Scholar 

  • Arvanitis DN, Yang W, Boggs JM (2002) Myelin proteolipid protein, basic protein, the small isoform of myelin-associated glycoprotein, and p42MAPK are associated in the Triton X-100 extract of central nervous system myelin. J Neurosci Res 70:8–23

    Article  CAS  PubMed  Google Scholar 

  • Atkins CM, Yon M, Groome NP, Sweatt JD (1999) Regulation of myelin basic protein phosphorylation by mitogen-activated protein kinase during increased action potential firing in the hippocampus. J Neurochem 73:1090–1097

    Article  CAS  PubMed  Google Scholar 

  • Baer AS, Syed YA, Kang SU, Mitteregger D, Vig R, Ffrench-Constant C, Franklin RJ, Altmann F, Lubec G, Kotter MR (2009) Myelin-mediated inhibition of oligodendrocyte precursor differentiation can be overcome by pharmacological modulation of Fyn-RhoA and protein kinase C signalling. Brain 132:465–481

    Article  PubMed  Google Scholar 

  • Barylko B, Dobrowolski Z (1984) Ca2+-calmodulin-dependent regulation of F-actin-myelin basic protein interaction. Eur J Cell Biol 35:327–335

    CAS  PubMed  Google Scholar 

  • Bates IR, Matharu P, Ishiyama N, Rochon D, Wood DD, Polverini E, Moscarello MA, Viner NJ, Harauz G (2000) Characterization of a recombinant murine 18.5-kDa myelin basic protein. Protein Expr Purif 20:285–299

    Article  CAS  PubMed  Google Scholar 

  • Benjamins JA, Morell P (1978) Proteins of myelin and their metabolism. Neurochem Res 3:137–174

    Article  CAS  PubMed  Google Scholar 

  • Berlet HH, Bischoff H, Weinhardt F (1994) Divalent metals of myelin and their differential binding by myelin basic protein of bovine central nervous system. Neurosci Lett 179:75–78

    Article  CAS  PubMed  Google Scholar 

  • Boggs JM (2006) Myelin basic protein: a multifunctional protein. Cell Mol Life Sci 63:1945–1961

    Article  CAS  PubMed  Google Scholar 

  • Boggs JM, Rangaraj G (2000) Interaction of lipid-bound myelin basic protein with actin filaments and calmodulin. Biochemistry 39:7799–7806

    Article  CAS  PubMed  Google Scholar 

  • Boggs JM, Rangaraj G, Hill CM, Bates IR, Heng YM, Harauz G (2005) Effect of arginine loss in myelin basic protein, as occurs in its deiminated charge isoform, on mediation of actin polymerization and actin binding to a lipid membrane in vitro. Biochemistry 44:3524–3534

    Article  CAS  PubMed  Google Scholar 

  • Boggs JM, Rangaraj G, Gao W, Heng YM (2006) Effect of phosphorylation of myelin basic protein by MAPK on its interactions with actin and actin binding to a lipid membrane in vitro. Biochemistry 45:391–401

    Article  CAS  PubMed  Google Scholar 

  • Brokx RD, Lopez MM, Vogel HJ, Makhatadze GI (2001) Energetics of target peptide binding by calmodulin reveals different modes of binding. J Biol Chem 276:14083–14091

    CAS  PubMed  Google Scholar 

  • Carotenuto A, Alcaro MC, Saviello MR, Peroni E, Nuti F, Papini AM, Novellino E, Rovero P (2008) Designed glycopeptides with different beta-turn types as synthetic probes for the detection of autoantibodies as biomarkers of multiple sclerosis. J Med Chem 51:5304–5309

    Article  CAS  PubMed  Google Scholar 

  • Cavatorta P, Giovanelli S, Bobba A, Riccio P, Szabo AG, Quagliariello E (1994) Myelin basic protein interaction with zinc and phosphate: fluorescence studies on the water-soluble form of the protein. Biophys J 66:1174–1179

    Article  CAS  PubMed  Google Scholar 

  • Cerenius Y, Stahl K, Svensson LA, Ursby T, Oskarsson A, Albertsson J, Liljas A (2000) The crystallography beamline I711 at MAX II. J Synchrotron Radiat 7:203–208

    Article  CAS  PubMed  Google Scholar 

  • Chao LP, Einstein ER (1970) Physical properties of the bovine encephalitogenic protein; molecular weight and conformation. J Neurochem 17:1121–1132

    Article  CAS  PubMed  Google Scholar 

  • Dobrowolski Z, Osinska H, Mossakowska M, Barylko B (1986) Ca2+-calmodulin-dependent polymerization of actin by myelin basic protein. Eur J Cell Biol 42:17–26

    CAS  PubMed  Google Scholar 

  • Dyson HJ, Wright PE (2002) Insights into the structure and dynamics of unfolded proteins from nuclear magnetic resonance. Adv Protein Chem 62:311–340

    Article  CAS  PubMed  Google Scholar 

  • Fragoso G, Haines JD, Roberston J, Pedraza L, Mushynski WE, Almazan G (2007) p38 mitogen-activated protein kinase is required for central nervous system myelination. Glia 55:1531–1541

    Article  PubMed  Google Scholar 

  • Garbay B, Fournier M, Sallafranque ML, Muller S, Boiron F, Heape A, Cassagne C, Bonnet J (1988) Po, MBP, histone, and DNA levels in sciatic nerve. Postnatal accumulation studies in normal and trembler mice. Neurochem Pathol 8:91–107

    CAS  PubMed  Google Scholar 

  • Garbay B, Heape AM, Sargueil F, Cassagne C (2000) Myelin synthesis in the peripheral nervous system. Prog Neurobiol 61:267–304

    Article  CAS  PubMed  Google Scholar 

  • Grand RJ, Perry SV (1980) The binding of calmodulin to myelin basic protein and histone H2B. Biochem J 189:227–240

    CAS  PubMed  Google Scholar 

  • Haas H, Oliveira CL, Torriani IL, Polverini E, Fasano A, Carlone G, Cavatorta P, Riccio P (2004) Small angle X-ray scattering from lipid-bound myelin basic protein in solution. Biophys J 86:455–460

    Article  CAS  PubMed  Google Scholar 

  • Harauz G, Libich DS (2009) The classic basic protein of myelin-conserved structural motifs and the dynamic barcode involved in membrane adhesion and protein–protein interactions. Curr Protein Peptide Sci 10:196–215

    Article  CAS  Google Scholar 

  • Harauz G, Ishiyama N, Bates IR (2000) Analogous structural motifs in myelin basic protein and in MARCKS. Mol Cell Biochem 209:155–163

    Article  CAS  PubMed  Google Scholar 

  • Harauz G, Ishiyama N, Hill CM, Bates IR, Libich DS, Fares C (2004) Myelin basic protein-diverse conformational states of an intrinsically unstructured protein and its roles in myelin assembly and multiple sclerosis. Micron 35:503–542

    Article  CAS  PubMed  Google Scholar 

  • Hill CM, Harauz G (2005) Charge effects modulate actin assembly by classic myelin basic protein isoforms. Biochem Biophys Res Commun 329:362–369

    Article  CAS  PubMed  Google Scholar 

  • Hirschberg D, Radmark O, Jornvall H, Bergman T (2003) Thr94 in bovine myelin basic protein is a second phosphorylation site for 42-kDa mitogen-activated protein kinase (ERK2). J Protein Chem 22:177–181

    Article  CAS  PubMed  Google Scholar 

  • Homchaudhuri L, Polverini E, Gao W, Harauz G, Boggs J (2009) Influence of membrane surface charge and post-translational modifications to myelin basic protein on its ability to tether the Fyn-SH3 domain to a membrane in vitro. Biochemistry 48:2385–2393

    Article  CAS  PubMed  Google Scholar 

  • Honkanen H, Lahti O, Nissinen M, Myllylä RM, Kangas S, Päiväläinen S, Alanne MH, Peltonen S, Peltonen J, Heape AM (2007) Isolation, purification and expansion of myelination-competent, neonatal mouse Schwann cells. Eur J Neurosci 26:953–964

    Article  PubMed  Google Scholar 

  • Iwasa Y, Iwasa T, Matsui K, Higashi K, Miyamoto E (1981) Interaction of calmodulin with chromatin associated proteins and myelin basic protein. Life Sci 29:1369–1377

    Article  CAS  PubMed  Google Scholar 

  • Kim JK, Mastronardi FG, Wood DD, Lubman DM, Zand R, Moscarello MA (2003) Multiple sclerosis: an important role for post-translational modifications of myelin basic protein in pathogenesis. Mol Cell Proteomics 2:453–462

    CAS  PubMed  Google Scholar 

  • Konarev PV, Petoukhov MV, Volkov VV, Svergun DI (2006) ATSAS 2.1, a program package for small-angle scattering data analysis. J Appl Cryst 39:277–286

    Article  CAS  Google Scholar 

  • Krigbaum WR, Hsu TS (1975) Molecular conformation of bovine A1 basic protein, a coiling macromolecule in aqueous solution. Biochemistry 14:2542–2546

    Article  CAS  PubMed  Google Scholar 

  • Kursula P (2008) Structural properties of proteins specific to the myelin sheath. Amino Acids 34:175–185

    Article  CAS  PubMed  Google Scholar 

  • Kursula P, Majava V (2007) A structural insight into lead neurotoxicity and calmodulin activation by heavy metals. Acta Crystallogr Sect F Struct Biol Cryst Commun 63:653–656

    Article  PubMed  Google Scholar 

  • Libich DS, Harauz G (2002a) Interactions of the 18.5-kDa isoform of myelin basic protein with Ca(2+)-calmodulin: in vitro studies using fluorescence microscopy and spectroscopy. Biochem Cell Biol 80:395–406

    Article  CAS  PubMed  Google Scholar 

  • Libich DS, Harauz G (2002b) Interactions of the 18.5 kDa isoform of myelin basic protein with Ca2 + -calmodulin: in vitro studies using gel shift assays. Mol Cell Biochem 241:45–52

    Article  CAS  PubMed  Google Scholar 

  • Libich DS, Harauz G (2008) Backbone dynamics of the 18.5 kDa isoform of myelin basic protein reveals transient alpha-helices and a calmodulin-binding site. Biophys J 94:4847–4866

    Article  CAS  PubMed  Google Scholar 

  • Libich DS, Hill CM, Bates IR, Hallett FR, Armstrong S, Siemiarczuk A, Harauz G (2003a) Interaction of the 18.5-kD isoform of myelin basic protein with Ca2+-calmodulin: effects of deimination assessed by intrinsic Trp fluorescence spectroscopy, dynamic light scattering, and circular dichroism. Protein Sci 12:1507–1521

    Article  CAS  PubMed  Google Scholar 

  • Libich DS, Hill CM, Haines JD, Harauz G (2003b) Myelin basic protein has multiple calmodulin-binding sites. Biochem Biophys Res Commun 308:313–319

    Article  CAS  PubMed  Google Scholar 

  • Libich DS, Robertson VJ, Monette MM, Harauz G (2004) Backbone resonance assignments of the 18.5 kDa isoform of murine myelin basic protein (MBP). J Biomol NMR 29:545–546

    Article  CAS  PubMed  Google Scholar 

  • Lolli F, Mulinacci B, Carotenuto A, Bonetti B, Sabatino G, Mazzanti B, D’Ursi AM, Novellino E, Pazzagli M, Lovato L, Alcaro MC, Peroni E, Pozo-Carrero MC, Nuti F, Battistini L, Borsellino G, Chelli M, Rovero P, Papini AM (2005) An N-glucosylated peptide detecting disease-specific autoantibodies, biomarkers of multiple sclerosis. Proc Natl Acad Sci USA 102:10273–10278

    Article  CAS  PubMed  Google Scholar 

  • Maatta JA, Coffey ET, Hermonen JA, Salmi AA, Hinkkanen AE (1997) Detection of myelin basic protein isoforms by organic concentration. Biochem Biophys Res Commun 238:498–502

    Article  CAS  PubMed  Google Scholar 

  • Majava V, Loytynoja N, Chen WQ, Lubec G, Kursula P (2008a) Crystal and solution structure, stability and post-translational modifications of collapsin response mediator protein 2. FEBS J 275:4583–4596

    Article  CAS  PubMed  Google Scholar 

  • Majava V, Petoukhov MV, Hayashi N, Pirila P, Svergun DI, Kursula P (2008b) Interaction between the C-terminal region of human myelin basic protein and calmodulin: analysis of complex formation and solution structure. BMC Struct Biol 8:10

    Article  PubMed  Google Scholar 

  • McLaughlin S, Hangyas-Mihalyne G, Zaitseva I, Golebiewska U (2005) Reversible-through calmodulin–electrostatic interactions between basic residues on proteins and acidic lipids in the plasma membrane. Biochem Soc Symp 72:189–198

    CAS  PubMed  Google Scholar 

  • Mendz GL, Jamie IM, White JW (1992) Effects of acyl chain length on the conformation of myelin basic protein bound to lysolipid micelles. Biophys Chem 45:61–77

    Article  CAS  PubMed  Google Scholar 

  • Mendz GL, Miller DJ, Ralston GB (1995) Interactions of myelin basic protein with palmitoyllysophosphatidylcholine: characterization of the complexes and conformations of the protein. Eur Biophys J 24:39–53

    Article  CAS  PubMed  Google Scholar 

  • Nuzzo S, Meneghini C, Mobilioo S, Haas H, Riccio P, Fasano A, Cavatorta P, Morante S (2002) An X-ray absorption spectroscopy study of the zinc environment in Langmuir–Blodgett phospholipid multilayers. Biophys J 83:3507–3512

    Article  CAS  PubMed  Google Scholar 

  • Oakberg TC, Trunk JG, Sutherland JC (2000) Calibration of photoelastic modulators in the vacuum UV. Proc SPIE 4133:101–110

    Article  Google Scholar 

  • Päiväläinen S, Nissinen M, Honkanen H, Lahti O, Kangas SM, Peltonen J, Peltonen S, Heape AM (2008) Myelination in mouse dorsal root ganglion/Schwann cell cocultures. Mol Cell Neurosci 37:568–578

    Article  PubMed  Google Scholar 

  • Persaud R, Fraser P, Wood DD, Moscarello MA (1988) The glycosylation of human myelin basic protein at threonines 95 and 98 occurs sequentially. Biochim Biophys Acta 966:357–361

    CAS  PubMed  Google Scholar 

  • Polverini E, Fasano A, Zito F, Riccio P, Cavatorta P (1999) Conformation of bovine myelin basic protein purified with bound lipids. Eur Biophys J 28:351–355

    Article  CAS  PubMed  Google Scholar 

  • Polverini E, Rangaraj G, Libich DS, Boggs JM, Harauz G (2008) Binding of the proline-rich segment of myelin basic protein to SH3 domains: spectroscopic, microarray, and modeling studies of ligand conformation and effects of posttranslational modifications. Biochemistry 47:267–282

    Article  CAS  PubMed  Google Scholar 

  • Reichardt G, Noll T, Packe I, Rotter P, Schmidt JS, Gudat W (2001) Adaption of the BESSY I-3 m normal incidence monochromators to the BESSY II source. Nucl Inst Method Phys Res A 467:458–461

    Article  Google Scholar 

  • Riccio P, Giovannelli S, Bobba A, Romito E, Fasano A, Bleve-Zacheo T, Favilla R, Quagliariello E, Cavatorta P (1995) Specificity of zinc binding to myelin basic protein. Neurochem Res 20:1107–1113

    Article  CAS  PubMed  Google Scholar 

  • Spyranti Z, Tselios T, Deraos G, Matsoukas J, Spyroulias GA (2009) NMR structural elucidation of myelin basic protein epitope 83-99 implicated in multiple sclerosis. Amino Acids, in press

  • Sutherland JC (1996) Circular dichroism using synchrotron radiation. In: Fasman GD (ed) Circular dichroism and the conformational analysis of biomolecules. Plenum Press, New York, pp 599–633

  • Tsang D, Tsang YS, Ho WK, Wong RN (1997) Myelin basic protein is a zinc-binding protein in brain: possible role in myelin compaction. Neurochem Res 22:811–819

    Article  CAS  PubMed  Google Scholar 

  • Tselios T, Probert L, Kollias G, Matsoukas E, Roumelioti P, Alexopoulos K, Moore GJ, Matsoukas J (1998) Design and synthesis of small semi-mimetic peptides with immunomodulatory activity based on myelin basic protein (MBP). Amino Acids 14:333–341

    Article  CAS  PubMed  Google Scholar 

  • Whittle N, Lubec G, Singewald N (2009) Zinc deficiency induces enhanced depression-like behaviour and altered limbic activation reversed by antidepressant treatment in mice. Amino Acids 36:147–158

    Article  CAS  PubMed  Google Scholar 

  • Zand R, Li MX, Jin X, Lubman D (1998) Determination of the sites of posttranslational modifications in the charge isomers of bovine myelin basic protein by capillary electrophoresis-mass spectroscopy. Biochemistry 37:2441–2449

    Article  CAS  PubMed  Google Scholar 

  • Zhong L, Bamm VV, Ahmed MA, Harauz G, Ladizhansky V (2007) Solid-state NMR spectroscopy of 18.5 kDa myelin basic protein reconstituted with lipid vesicles: spectroscopic characterisation and spectral assignments of solvent-exposed protein fragments. Biochim Biophys Acta 1768:3193–3205

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Academy of Finland, the Sigrid Juselius Foundation, the Finnish MS Foundation, the Finnish Cultural Foundation, and the Department of Biochemistry, University of Oulu. Data collection at MAX-Lab and BESSY (project BESSY-09.1.80843) was supported by the European Community-Research Infrastructure Action under the FP6 “Structuring the European Research Area” Programme, contract RII3-CT-2004-506008 (IA-SFS). We thank the staff of beamline I711 at MAX-Lab and the Biocenter Oulu Proteomics core facility for excellent support. The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petri Kursula.

Additional information

V. Majava and C. Wang contributed equally to this work.

An erratum to this article can be found at http://dx.doi.org/10.1007/s00726-010-0583-6

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3789 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Majava, V., Wang, C., Myllykoski, M. et al. Structural analysis of the complex between calmodulin and full-length myelin basic protein, an intrinsically disordered molecule. Amino Acids 39, 59–71 (2010). https://doi.org/10.1007/s00726-009-0364-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-009-0364-2

Keywords

Navigation