Skip to main content
Log in

Effects of zinc ex vivo and intracellular zinc chelator in vivo on taurine uptake in goldfish retina

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Taurine and zinc exert neurotrophic effects. Zinc modulates Na+/Cl-dependent transporters. This study examined the effect of zinc (ZnSO4) ex vivo and zinc chelator N,N,N′,N′-tetrakis-(2-pyridylmethyl) ethylenediamine (TPEN) in vivo on [3H]taurine transport in goldfish retina. The effect of TPEN in vivo on taurine and zinc levels was determined. Isolated cells were incubated in Ringer with zinc (0.1–100 μM). Taurine transport was done with taurine (0.001–1 mM) and 50 nM [3H]taurine. Zinc (100 μM) noncompetitively inhibited taurine transport. TPEN was administered intraocularly and retinas extracted 3, 5 and 10 days later. Taurine was determined by HPLC (nmol/mg protein) and zinc by spectrophotometry ICP (mg/mg protein). Taurine and zinc levels decreased at 3 days and increased at 10 days after TPEN administration. At 10 days after intraocular TPEN, taurine transport affinity increased (K s = 0.018 ± 0.006 vs. 0.028 ± 0.008 mM). Apparently, zinc deficiency affects the taurine–zinc complex and taurine availability. The increased taurine uptake affinity by TPEN was possibly associated with a response to maximize retinal taurine content at low zinc concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DMSO:

Dimethyl sulfoxide

i.o.:

Intraocular injection

EC50 :

Mean effective concentration

TPEN:

N,N,N′,N′-tetrakis-(2-pyridylmethyl) ethylenediamine

References

  • Ahn Y, Kim Y, Hong S, Koh Y (1998) Depletion of intracellular zinc induces protein synthesis-dependent neuronal apoptosis in mouse cortical culture. Exp Neurol 154:47–56

    Article  CAS  PubMed  Google Scholar 

  • Chai F, Truong-Tran A, Ho L, Zalewski D (1999) Regulation of caspase activation and apoptosis by cellular zinc fluxes and zinc deprivation: a review. Immunol Cell Biol 77:272–278

    Article  CAS  PubMed  Google Scholar 

  • Erikson K, Aschner M (2002) Manganese causes differential regulation of glutamate transporter (GLAST), taurine transporter and metallothionein in cultured rat astrocytes. Neurotoxicology 23:595–602

    Article  CAS  PubMed  Google Scholar 

  • Fazzino F, Urbina M, Mata S, Lima L (2006) Taurine transport and transporter localization in blood peripheral lymphocytes of controls and major depression patients. Adv Exp Med Biol 583:423–426

    Article  CAS  PubMed  Google Scholar 

  • García-Colunga J, Reyes-Haro D, Godoy-García U, Miledi R (2005) Zinc modulation of serotonin uptake in the adult rat corpus callosum. J Neurosci Res 80:145–149

    Article  PubMed  Google Scholar 

  • Giros B, Caron M (1993) Molecular characterization of the dopamine transporter. Trends Pharmacol Sci 14:43–49

    Article  CAS  PubMed  Google Scholar 

  • Glover C, Hogstrand C (2002) Amino acid modulation of in vivo intestinal zinc absorption in freshwater rainbow trout. J Exp Biol 205:151–158

    CAS  PubMed  Google Scholar 

  • Gong H, Amemiya T (2001) Optic nerve changes in zinc-deficient rats. Exp Eye Res 72:363–369

    Article  CAS  PubMed  Google Scholar 

  • González-Quevedo A, Obregón F, Urbina M, Roussó T, Lima L (2003) Effects of taurine deficiency and chronic methanol administration on rat retina, optic nerve and brain amino acids and monoamines. Nutr Neurosci 6:253–261

    Article  PubMed  Google Scholar 

  • Grafe F, Wohlrad W, Neubert R, Brandsch M (2004) Functional characterization of sodium-and chloride-dependent taurine transport in human keratinocytes. Eur J Pharm Biopharm 57:337–341

    Article  CAS  PubMed  Google Scholar 

  • Grahn B, Paterson P, Gottschall-Pass K, Zhang Z (2001) Zinc and the eye. J Am Coll Nutr 20:106–118

    CAS  PubMed  Google Scholar 

  • Guerra A, Urbina M, Lima L (2000) Modulation of taurine uptake in the goldfish retina and axonal transport to the tectum. Effect of optic crush and axotomy. Amino Acids 19:1–17

    Article  Google Scholar 

  • Harraki B, Guiraud P, Rochat M, Faure H, Richard M, Fusselier M, Favier A (1994) Effect of taurine, l-glutamine and l-histidine addition in an amino acid glucose solution on the cellular bioavailability of zinc. Bio Metals 7:237–243

    CAS  Google Scholar 

  • Harrison N, Gibbons S (1994) Zn+2: an endogenous modulator of ligand and voltage-gated ion channels. Neuropharmacology 33:935–952

    Article  CAS  PubMed  Google Scholar 

  • Huszti Z, Horvath-Sziklai A, Noszal B, Madarasz E, Deli A (2001) Enhancing effect of zinc on astroglial and cerebral endothelial histamine uptake. Biochem Pharmacol 62:1491–1500

    Article  CAS  PubMed  Google Scholar 

  • Ilouz R, Kaidanovich O, Gurwitz D, Eldar-Finkelman H (2002) Biochem Biophys Res Commun 295:102–106

    Article  CAS  PubMed  Google Scholar 

  • Jacobson SG, Meadows NJ, Keeling PW, Mitchell WD, Thompson RP (1986) Rod-mediated retinal dysfunction in cats with zinc depletion: comparison with taurine depletion. Clin Sci (Lond) 71:559–564

    CAS  Google Scholar 

  • Kaneda M, Andrásfalvy B, Kaneko A (2000) Modulation by Zn2+ of GABA responses in bipolar cells of the mouse retina. Vis Neurosci 17:273–281

    Article  CAS  PubMed  Google Scholar 

  • Kaneda M, Ishii K, Akagi T, Tatsukawa T, Hashikawa T (2005) Endogenous zinc can be a modulator of glycinergic signaling pathway in the rat retina. J Mol Histol 36:179–185

    Article  CAS  PubMed  Google Scholar 

  • Kreitzer MA, Birnbaum AD, Qian H, Malchow RP (2009) Pharmacological characterization, localization, and regulation of ionotropic glutamate receptors in skate horizontal cells. Vis Neurosci 14:1–13

    Google Scholar 

  • Law R (1998) The role of taurine in the regulation of brain cell volume in chronically hyponatraemic rats. Neurochem Int 33:467–472

    Article  CAS  PubMed  Google Scholar 

  • Lees G, Lehmann A, Sandberg M, Hamberger A (1990) The neurotoxicity of zinc in the rat hippocampus. Neurosci Lett 120:155–158

    Article  CAS  PubMed  Google Scholar 

  • Lima L (1999) Taurine and its trophic effects in the retina. Neurochem Res 24:1333–1338

    Article  CAS  PubMed  Google Scholar 

  • Lima L, Cubillos S (1998) Taurine might be acting as a trophic factor in the retina by modulating phosphorylation of cellular proteins. J Neurosci Res 53:377–384

    Article  CAS  PubMed  Google Scholar 

  • Lima L, Matus P, Drujan B (1991) Differential taurine uptake in central and peripheral regions of goldfish retina. J Neurosci Res 28:422–427

    Article  CAS  PubMed  Google Scholar 

  • Lima L, Matus P, Drujan B (1993) Taurine-induced regeneration of goldfish retina in culture may involve a calcium-mediated mechanism. J Neurochem 60:2153–2157

    Article  CAS  PubMed  Google Scholar 

  • Lima L, Cubillos S, Guerra A (2000) Regulation of high-affinity taurine transport in goldfish and rat retinal cells. Adv Exp Med Biol 483:431–440

    Article  CAS  PubMed  Google Scholar 

  • Lima L, Obregón F, Matus P (1998) Taurine, glutamate and GABA modulate the outgrowth from goldfish retinal explants and its concentrations are affected by the crush of the optic nerve. Amino Acids 15:195–209

    Article  CAS  PubMed  Google Scholar 

  • Lima L, Obregón F, Roussó T, Quintal M, Benzo Z, Auladel C (2004) Content and concentration of taurine, hypotaurine, and zinc in the retina, the hippocampus, and the dentate gyrus of the rat at various postnatal days. Neurochem Res 29:247–255

    Article  CAS  PubMed  Google Scholar 

  • Loland C, Norregaard L, Gether U (1999) Defining proximity relationships in the tertiary structure of the dopamine transporter. Identification of a conserved glutamic acid as a third coordinate in the endogenous zn21-binding site. J Biol Chem 274:36928–36934

    Article  CAS  PubMed  Google Scholar 

  • Lowry O, Rosebrough N, Farr A, Randall R (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Mazdai M, Strain J, Cotter T, Hannigan B (1991) Programmed cell death (apoptosis) in lymphoid and myeloid cell lines during zinc deficiency. Clin Exp Immunol 83:338–343

    PubMed  Google Scholar 

  • Militante J, Lombardini J (1999) Taurine uptake activity in the rat retina: protein kinase C-independent inhibition by chelerythrine. Brain Res 818:368–374

    Article  CAS  PubMed  Google Scholar 

  • Militante J, Lombardini J (2002) Taurine: evidence of physiological function in the retina. Nutr Neurosci 5:75–90

    Article  CAS  PubMed  Google Scholar 

  • Noh K, Kim Y, Koh J (1999) Mediation by membrane protein kinase C of zinc-induced oxidative neuronal injury in mouse cortical cultures. J Neurochem 72:1609–1616

    Article  CAS  PubMed  Google Scholar 

  • Norgaard-Nielsen K, Norregaard L, Hastrup H, Javitch J, Gether U (2002) Zn2+ site engineering at the oligomeric interface of the dopamine transporter. FEBS Lett 524:87–91

    Article  CAS  PubMed  Google Scholar 

  • Norregaard L, Frederiksen D, Nielsen E, Gether U (1998) Delineation of an endogenous zinc-binding site in the human dopamine transporter. EMBO J 17:4266–4273

    Article  CAS  PubMed  Google Scholar 

  • Nusetti S, Obregon F, Quintal M, Benzo Z, Lima L (2005) Taurine and zinc modulate outgrowth from goldfish retinal explants. Neurochem Res 30:1483–1492

    Article  CAS  PubMed  Google Scholar 

  • Nusetti S, Obregón F, Lima L (2006) Neuritic outgrowth from goldfish retinal explants, interaction of taurine and zinc. Adv Exp Med Biol 583:435–440

    Article  CAS  PubMed  Google Scholar 

  • Nusetti S, Salazar V, Lima L (2009) Localization of taurine transporter, taurine and zinc in goldfish retina. Adv Exp Med Biol 643:233–242

    Article  PubMed  Google Scholar 

  • Oteiza P, Hurley L, Lonnerdal B, Keen C (1990) Effects of zinc deficiency on microtubule polymerization in the developing rat brain. Biol Trace Elem Res 24:13–23

    Article  CAS  PubMed  Google Scholar 

  • Pasantes-Morales H, Cruz C (1984) Protective effect of taurine and zinc on peroxidation-induced damage in photoreceptor outer segments. J Neurosci Res 11:303–311

    Article  CAS  PubMed  Google Scholar 

  • Redenti S, Ripps H, Chappell RL (2007) Zinc release at the synaptic terminals of rod photoreceptors. Exp Eye Res 85:580–584

    Article  CAS  PubMed  Google Scholar 

  • Rogers J, Hurley L (1987) Effects of zinc deficiency on morphogenesis of the fetal rat eye. Development 99:231–238

    CAS  PubMed  Google Scholar 

  • Saghizadeh M, Akhmedov NB, Yamashita CK, Gribanova Y, Theendakara V, Mendoza E, Nelson SF, Ljubimov AV, Farber DB (2009) ZBED4, a BED-type zinc-finger protein in the cones of human retina. Invest Ophthalmol Vis Sci 50:3580–3588

    Article  PubMed  Google Scholar 

  • Salceda R, Saldaña M (1993) Glutamate and taurine uptake by retinal pigment epithelium during rat development. Comp Biochem Physiol 104:311–316

    Article  CAS  Google Scholar 

  • Sandstead H, Christopher F, Penland J (2000) History of zinc as related to brain function. J Nutr 130:496–502

    Google Scholar 

  • Schetz J, Chu A, Sibley D (1999) Zinc modulates antagonist interactions with D2-like dopamine receptors through distinct molecular mechanisms. J Pharmacol Exp Ther 289:956–964

    CAS  PubMed  Google Scholar 

  • Scholze P, Norregaard L, Singer E, Freissmuth M, Gether U, Sitte H (2002) The role of zinc ions in reverse transport mediated by monoamine transporters. J Biol Chem 277:21505–21513

    Article  CAS  PubMed  Google Scholar 

  • Spiridon M, Kamm D, Billups B, Mobbs P, Attwell D (1998) Modulation by zinc of the glutamate transporters in glial cells and cones isolated from the tiger salamander retina. J Physiol 506:363–376

    Article  CAS  PubMed  Google Scholar 

  • Sturman J, Moretz R, French J, Wisniewski H (1985) Postnatal taurine deficiency in the kitten results in a persistence of the cerebellar external granule cell layer: correction by taurine feeding. J Neurosci Res 13:428–521

    Google Scholar 

  • Sun Z, Zhang DQ, McMahon DG (2009) Zinc modulation of hemi-gap-junction channel currents in retinal horizontal cells. J Neurophysiol 101:1774–1780

    Article  CAS  PubMed  Google Scholar 

  • Takeda A (2001) Zinc homeostasis and functions in the brain. Biometals 14:343–351

    Article  CAS  PubMed  Google Scholar 

  • Tang X, Shay N (2001) Zinc has an insulin-like effect on glucose transport mediated by phosphoinositol-3-kinase and Akt in 3T3-L1 fibroblasts and adipocytes. J Nutr 131:1414–1420

    CAS  PubMed  Google Scholar 

  • Tapia F (1994) GraphPad Instat Softward. V2.05a

  • Ugarte M, Osborne N (2001) Zinc in the retina. Prog Neurobiol 64:219–249

    Article  CAS  PubMed  Google Scholar 

  • Vallee B, Falcchuk K (1993) The biochemical basis of zinc physiology. Physiol Rev 73:79–105

    CAS  PubMed  Google Scholar 

  • van Gelder N (1983) A central mechanism of action for taurine: osmoregulation, bivalent cations, and excitation threshold. Neurochem Res 8:687–699

    Article  PubMed  Google Scholar 

  • Vanderberg R, Mitrovic D, Johnston R (1998) Molecular basis for differential inhibition of glutamate transporter subtypes by zinc ions. Mol Pharmacol 54:189–196

    Google Scholar 

  • Wallwork J, Sandstead H (1983) Effect of zinc deficiency on appetite and free amino acid concentrations in rat brain. J Nutr 113:47–54

    CAS  PubMed  Google Scholar 

  • Weiss J, Sensi S, Koh J (2000) Zn2+ a novel mediator of neural injury in brain disease. Trends Pharmacol Sci 21:395–401

    Article  CAS  PubMed  Google Scholar 

  • Wu Q, Wada M, Shimada A, Yamamoto A, Fujita T (2006) Funcional characterization of Zn2(+)-sensitive GABA transporter expressed in primary cultures of astrocytes from rat cerebral cortex. Brain Res 1075:100–109

    Article  CAS  PubMed  Google Scholar 

  • Yoo M, Lee J, Lee S, Koh J, Yoon Y (2004) Protection by pyruvate of rat retinal cells against zinc toxicity in vitro, and pressure-induced ischemia in vivo. Invest Ophthalmol Vis Sci 45:1523–1530

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant S1-2001-903 from Fondo Nacional de Investigación, Tecnología e Innovación (FONACIT), Venezuela. S. Nusetti was a Ph.D. student of Centro de Estudios Avanzados, Instituto Venezolano de Investigaciones Científicas, with financial support from Universidad de Oriente and FONACIT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Lima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nusetti, S., Urbina, M., Obregón, F. et al. Effects of zinc ex vivo and intracellular zinc chelator in vivo on taurine uptake in goldfish retina. Amino Acids 38, 1429–1437 (2010). https://doi.org/10.1007/s00726-009-0357-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-009-0357-1

Keywords

Navigation