Skip to main content
Log in

d-Aspartic acid induced oxidative stress and mitochondrial dysfunctions in testis of prepubertal rats

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Previously we demonstrated the potential of d-aspartic acid (d-Asp), an acidic amino acid to induce oxidative response in prepubertal rat testis in vitro. In the present study, we determined the extent of oxidative stress in the testis of prepubertal rats that were administered d-Asp (100 and 500 mg/kg bw/d, i.p. 7 days). d-Asp treatment significantly elevated the levels of reactive oxygen species, malondialdehyde and hydroperoxide in cytosol and mitochondria of testis, which were accompanied by enhanced glutathione levels, elevated activities of glutathione-dependent enzymes and catalase suggesting a state of oxidative stress. Further, the activities of d-aspartate oxidase and 3β-hydroxy steroid dehydrogenase were elevated in the testis. The testis mitochondria of d-Asp-treated rats showed altered citric acid and complex enzyme activities, reduction in membrane potential, increased permeability and intracellular Ca2+ levels. Collectively, these findings suggest the potential of d-Asp to induce oxidative perturbations in the testis of prepubertal rats and this mechanism may in part be responsible for the observed physiological effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

d-AspO:

d-Aspartate oxidase

DCF:

Dichlorofluorescein

4-HNE:

4-hydroxy nonenal

HEPES:

N-2hydroxyethylpiperazin-N2-ethanesulfonic acid

MDA:

Malondialdehyde

MPT:

Membrane permeability transition

NO:

Nitric oxide

NMDA:

N-Methyl-d-aspartate

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–125

    Article  CAS  PubMed  Google Scholar 

  • Andersson BS, Aw TY, Jones DP (1987) Mitochondrial transmembrane potential and pH gradient during anoxia. Am J Physiol 252:C349–C355

    CAS  PubMed  Google Scholar 

  • Armstrong JS, Yang H, Duan W, Whiteman M (2004) Cytochrome bc(l) regulates the mitochondrial permeability transition by two distinct pathways. J Biol Chem 279:50420–50428

    Article  CAS  PubMed  Google Scholar 

  • Bauche F, Fourchard MH, Jegou B (1994) Antioxidant system in rat testicular cells. FEBS Lett 349:392–396

    Article  CAS  PubMed  Google Scholar 

  • Berridge MV, Tans AS (1993) Characterization of the cellular reduction of 3-(4, 5-dimethyl thiazol-2-yl)-2, 5-diphenyltetrazoliumbromide (MTT): subcellular localization, substrate dependence and involvement of mitochondrial electron transport in MTT reduction. Arch Biochem Biophys 303:474–482

    Article  CAS  PubMed  Google Scholar 

  • Canuto RA, Garcea R, Biocca M, Pascale M, Pirisi L, Feo F (1983) The subcellular distribution and properties of aldehyde dehydrogenase of hepatoma AH-120. Eur J Cancer Clin Oncol 19:389–400

    Article  CAS  PubMed  Google Scholar 

  • Chandrashekar KN, Muralidhara (2008) Oxidative alterations induced by D-aspartic acid in prepubertal rat testis in vitro: a mechanistic study. Theriogenology 70:97–104

  • Choi BM, Pae HO, Jang SI, Kim YM, Chung HT (2002) Nitric oxide as a proapoptotic as well as antiapoptotic modulator. J Biochem Mol Biol 35:116–126

    CAS  PubMed  Google Scholar 

  • Corte`s-Rojo C, Clemente-Guerrero M, Saavedra-Molina A (2007) Effects of d-amino acids on lipoperoxidation in rat liver and kidney mitochondria. Amino acids 32:31–37

    Article  CAS  Google Scholar 

  • D’Aniello A (2007) d-Aspartic acid: an endogenous aminoacid with an important neuro- endocrine role. Brain Res Rev 53:215–234

    Article  PubMed  Google Scholar 

  • D’Aniello A, D’Onofrio G, Pischetola M, D’Aniello G, Vetere A, Petrucelli L, Fisher GH (1993a) Biological role of d-amino acid oxidase and d-aspartate oxidase. J Biol Chem 268:26941–26949

    PubMed  Google Scholar 

  • D’Aniello A, Vetere A, Petrucelli L (1993b) Further study on the specificity of d-amino acid oxidase and d-aspartate oxidase and time course for complete oxidation of d-amino acids. Comp Biochem Physiol B 105:731–734

    Article  PubMed  Google Scholar 

  • D’Aniello A, Di Cosmo A, Di Cristo C, Annunziato L, Petrucelli L, Fisher GH (1996) Involvement of d-aspartic acid in the synthesis of testosterone in rat testes. Life Sci 59:97–104

    Article  PubMed  Google Scholar 

  • D’Aniello A, Di Fiore MM, D’Aniello G, Colin FE, Lewis G, Setchell BP (1998) Secretion of d-aspartic acid by the rat testis and spermatogenesis. FEBS Lett 436:23–27

    Article  PubMed  Google Scholar 

  • D’Aniello A, Di Fiore MM, Fisher GH, Milone A, Seleni A, D’Aniello S, Perna AF, Ingrosso D (2000) Occurrence of d-aspartic acid and N-methyl-d-aspartic acid in rat neuroendocrine tissues and their role in the modulation of luteinizing hormone and growth hormone release. FASEB J 14:699–714

    PubMed  Google Scholar 

  • Desaiah D, Phillips TD, Hayes AW, Ho IK (1979) Effects of the aflatoxins on ATPase activities in mouse and rat liver. J Environ Sci Health B 14:265–278

    Article  CAS  PubMed  Google Scholar 

  • Driver AS, Kodavanti PS, Mundy WR (2000) Age related changes in reactive oxygen species production in rat brain homogenates. Neurotoxicol Teratol 22:175–181

    Article  CAS  PubMed  Google Scholar 

  • Dunlop DS, Neidle A, McHale D, Dunlop DM, Lajtha A (1986) The presence of free d-aspartic acid in rodents and man. Biochem Biophys Res Commun 141:27–32

    Article  CAS  PubMed  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  CAS  PubMed  Google Scholar 

  • Fiske CH, Subbarrow YJ (1925) The colorimetric determination of phosphorus. J Biol Chem 66:375–381

    CAS  Google Scholar 

  • Flohe L, Gunzler WA (1984) Assays of glutathione peroxidase. Methods Enzymol 105:114–121

    Article  CAS  PubMed  Google Scholar 

  • Friedman M (1999) Chemistry, Nutrition, and Microbiology of D-amino acids. J Agric Food Chem 47:3457–3479

    Article  CAS  PubMed  Google Scholar 

  • Fuchs SA, Berger R, Klomp LWJ, Koning TJ (2005) d-Amino acids in the central nervous system in health and disease. Mol Genet Metab 85:168–180

    Article  CAS  PubMed  Google Scholar 

  • Fukushima T, Shirao M, Ichihara H, Santa T, Homma H, Imai K (1998) Studies on the fate of d-aspartic acid in pineal and pituitary glands of rats after intravenous administration. Proc Japan Acad 74(B):18–23

    Article  Google Scholar 

  • Goldberg E, Hawtrey C (1967) The ontogeny of sperm specific lactate dehydrogenase in mice. J Expt Zool 164:309–316

    Article  CAS  Google Scholar 

  • Gonzalez-Hernandez JC, Aguilera-Aguirre L, Perez-Vazquez C, Ramirez J, Clemente-Guerrero M, Cortes-Rojo C, Saavedra-Molina A (2003) Effect of d-amino acids on some mitochondrial functions in rat liver mitochondria. Amino acids 24:163–169

    CAS  PubMed  Google Scholar 

  • Gunter TE, Yule DI, Gunter KK, Eliseev RA, Salter JD (2004) Calcium and mitochondria. FEBS Lett 567:96–102

    Article  CAS  PubMed  Google Scholar 

  • Guthenberg C, Alin P, Mannervik B (1985) Glutathione transferase from rat testis. Methods Enzymol 113:507–510

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658

    Article  CAS  PubMed  Google Scholar 

  • Hamase K, Morikawa A, Zaitsu K (2002) D-amino acids in mammals and their diagnostic value. J Chromatogr B 781:73–91

    Article  CAS  Google Scholar 

  • Hashimoto A, Chiba Y (2004) Effect of systemic administration of d-serine on the levels of d- and l-serine in several brain areas and periphery of rat. Eur J Pharmacol 495:153–158

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto K, Fukushima T, Shimizu E, Komatsu N, Watanabe H, Shinoda N, Nakazato M, Kumakiri C, Okada S, Hasegawa H, Imai K, Iyo M (2003) Decreased serum levels of d-serine in patients with schizophrenia. Arch Gen Psychiatry 60:572–576

    Article  CAS  PubMed  Google Scholar 

  • Hitoshi A, Satoh T, Sakai N, Yamada M, Enokido Y, Ikeuchi T, Hiroshi H (1997) Generation of free radicals during lipid peroxide triggered apoptosis in PC12 h cells. Biochim Biophys Acta 1345:35–42

    Google Scholar 

  • Homma H (2002) d-Aspartate in the mammalian body. Viva Origino 30:204–215

    CAS  Google Scholar 

  • Homma H (2007) Biochemistry of d-aspartate in mammalian cells. Amino acids 32:3–11

    Article  CAS  PubMed  Google Scholar 

  • Hu JH, Yang N, Ma YH, Jiang J, Zhang JF, Fei J, Guo LH (2004) Identification of glutamate transporters and receptors in mouse testis. Acta Pharmacol Sin 25:366–371

    CAS  PubMed  Google Scholar 

  • Kirlin WG, Cai J, Thompson SA, Diaz D, Kavanagh TJ, Jones DP (1999) Glutathione redox potential in response to differentiation and enzyme inducers. Free Radic Biol Med 27:1208–1218

    Article  CAS  PubMed  Google Scholar 

  • Kitto GB (1969) Intra and extramitochondrial malate dehydrogenases from chicken and tuna heart. Methods Enzymol 13:106–116

    Article  CAS  Google Scholar 

  • Kostic T, Andric S, Kovacevic R, Maric D (1998) The involvement of nitric oxide in stress impaired testicular steroidogenesis. Eur J Pharmacol 346:267–273

    Article  CAS  PubMed  Google Scholar 

  • Kostyuk VA, Potapovich AI (1989) Superoxide–driven oxidation of quercetin and a simple sensitive assay for determination of superoxide dismutase. Biochem Int 19:1117–1124

    CAS  PubMed  Google Scholar 

  • Kroemer G, Zamzami N, Susin SA (1997) Mitochondrial control of apoptosis. Immunol Today 18:44–51

    Article  CAS  PubMed  Google Scholar 

  • Krug AW, Volker K, Dantzler WH, Silbernagl S (2007) Why is d-serine nephrotoxic and α-aminoisobutryic acid protective. Am J Physiol Renal Physiol 293:382–390

    Article  Google Scholar 

  • Lamanna C, Assisi L, Botte V, Di Fiore MM (2007a) Involvement of d-Asp in P450 aromatase activity and estrogen receptors in boar testis. Amino acids 32:45–51

    Article  CAS  PubMed  Google Scholar 

  • Lamanna C, Assisi L, Vittoria A, Botte V, Di Fiore MM (2007b) d-Aspartic acid and nitric oxide as regulators of androgen production in boar testis. Theriogenology 67:249–254

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement using folin–phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Luetjens CM, Bui NT, Sengpiel B, Munstermann G, Poppe M, Krohn AJ, Bauerbach E, Krieglstein J, Prehn JH (2000) Delayed mitochondrial dysfunction in excitotoxic neuron death: cytochrome c release and a secondary increase in superoxide production. J Neurosci 20:5715–5723

    CAS  PubMed  Google Scholar 

  • Maekawa M, Okamura T, Kasai N, Hori Y, Summer KH, Konno R (2005) d-Amino acid oxidase is involved in d-serine induced nephrotoxicity. Chem Res Toxicol 18:1678–1682

    Article  CAS  PubMed  Google Scholar 

  • Man EH, Bada JL (1987) Dietary d-amino acids. Ann Rev Nutr 7:209–225

    Article  CAS  Google Scholar 

  • Meldrum BS, Akbar MT, Chapman AG (1999) Glutamate receptors and transporters in genetic and acquired models of epilepsy. Epilepsy Res 36:189–204

    Article  CAS  PubMed  Google Scholar 

  • Mokrasch LC, Teschke EJ (1984) Glutathione content of cultured cells and rodent brain regions: a specific fluorometric assay. Anal Biochem 140:506–509

    Article  CAS  PubMed  Google Scholar 

  • Morikawa A, Hamase K, Inoue T, Konno R, Zaitsu K (2007) Alterations in d-amino acid levels in the brains of mice and rats after the administration of d-amino acids. Amino acids 32:13–20

    Article  CAS  PubMed  Google Scholar 

  • Nagata Y, Homma H, Matsumoto M, Imai K (1999) Stimulation of steroidogenic acute regulatory (StAR) gene expression by d-aspartate in rat leydig cells. FEBS Lett 454:317–320

    Article  CAS  PubMed  Google Scholar 

  • Navarro A, Sanchez Del Pino MJ, Gomez C, Peralta JL, Boveris A (2002) Behavioral dysfunction, brain oxidative stress, and impaired mitochondrial electron transfer in aging mice. Am J Physiol Regul Integr Comp Physiol 282:R985–R992

    CAS  PubMed  Google Scholar 

  • Navarro A, Gomez C, Lopez-Cepero JM, Boveris A (2004) Beneficial effects of moderate exercise on mice aging: survival, behavior; oxidative stress, and mitochondrial electron transfer. Am J Physiol Regul Integr Comp Physiol 286:R505–R511

    CAS  PubMed  Google Scholar 

  • Ohakawa H, Ohishi U, Yagi K (1979) Assay of lipid peroxides in animal tissues by thiobarbituric reaction. Anal Biochem 95:145–149

    Google Scholar 

  • Orozco-Ibarra M, Medina-Campos ON, Sanchez-Gonzalez DJ, Martinez-Martinex CM, Floriano-Sanchez E, Santamaria A, Ramirej N, Bobadilla NA, Pedraza-Chaverri J (2007) Evaluation of oxidative stress in d-serine induced nephrotoxicity. Toxicology 229:123–135

    Article  CAS  PubMed  Google Scholar 

  • Pant N, Shankar R, Srivastava SP (1997) In utero and lactational exposure of carbofuran to rats: effect on testes and sperm. Hum Exp Toxicol 16:267–272

    Article  CAS  PubMed  Google Scholar 

  • Pennington R (1961) Biochemistry of dystrophic muscle: mitochondrial succinate tetrazolium reductase and adenosine triphosphatase. Biochem J 80:649–654

    CAS  PubMed  Google Scholar 

  • Qujeq D (2002) Development of a quantitative assay method for 3-beta-hydroxy-delta-5-steroid dehydrogenase in rat testis. Steroids 67:1071–1077

    Article  CAS  PubMed  Google Scholar 

  • Rigobello MP, Folda A, Scutari G, Bindoli A (2005) The modulation of thiol redox state affects the production and metabolism of hydrogen peroxide by heart mitochondria. Arch Biochem Biophys 441:112–122

    Article  CAS  PubMed  Google Scholar 

  • Shapira R, Chou CH (1987) Differential racemization of aspartate and serine in human myelin basic protein. Biochem Biophys Res Commun 146:1342–1349

    Article  CAS  PubMed  Google Scholar 

  • Soto A, DelRaso NJ, Schlager JJ, Chan VT (2008) d-Serine exposure resulted in expression changes indicative of activation of fibrogenic pathways and down-regulation of energy metabolism and oxidative stress response. Toxicology 243:177–192

    Article  CAS  PubMed  Google Scholar 

  • Srere PA (1969) Citrate synthase. Methods Enzymol 13:3–26

    Article  CAS  Google Scholar 

  • Storto M, Sallese M, Salvatore L, Poulet R, Condonelli DF, Dell’Albani P, Marcello MF, Romeo R, Piomboni P, Barone N, Nicoletti F, Nicoletti A, Blasi De (2001) Expression of metabotropic glutamate receptors in rat and human testis. J Endocrinol 170:71–78

    Article  CAS  PubMed  Google Scholar 

  • Traverso N, Menini S, Odetti P, Pronzato MA, Cottalasso D, Marinari UM (2002) Diabetes impairs the enzymatic disposal of 4-hydroxynonenal in rat liver. Free Radic Biol Med 32:350–359

    Article  CAS  PubMed  Google Scholar 

  • Trounce IA, Kim YL, Jun AS, Wallace DC (1996) Assessment of mitochondrial oxidative phosphorylation in patient with muscle biopsies, lymphoblasts and transmitochondrial cell lines. Methods Enzymol 264:484–509

    Article  CAS  PubMed  Google Scholar 

  • Verrall L, Walker M, Rawlings N, Benzel I, Kew JN, Harrison PJ, Burnet PW (2007) d-Amino acid oxidase and serine racemase in human brain: normal distribution and altered expression in Schizophrenia. Eur J Neurosci 26:1657–1669

    Article  PubMed  Google Scholar 

  • Wolf SP (1994) Ferrous iron oxidation in presence of ferric ion indicator xylenol orange for measurement of hydroperoxides. Methods Enzymol 233:182–189

    Article  Google Scholar 

  • Ying J, Clavreul N, Sethuraman M, Adachi T, Cohen RA (2007) Thiol oxidation in signaling and response to stress: detection and quantification of physiological and pathophysiological thiol modifications. Free Radic Biol Med 43:1099–1108

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the Department of Science and Technology (DST), New Delhi, Government of India (DST-SR/SO/AS-48) to the senior author. The first author (KNC) gratefully acknowledges the granting agency for the financial assistance in the form of a Junior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muralidhara.

Additional information

Presented in part during the “International Conference on Emerging Trends in Free Radical and Antioxidant Research”—Third Biennial Meeting of the Society for Free Radical Research, Asia (SFRR Asia) and Sixth Annual Meeting of the Society for Free Radical Research, India (SFRR India)—held during January 8–11, 2007 at Lonavala, India.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chandrashekar, K.N., Muralidhara d-Aspartic acid induced oxidative stress and mitochondrial dysfunctions in testis of prepubertal rats. Amino Acids 38, 817–827 (2010). https://doi.org/10.1007/s00726-009-0288-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-009-0288-x

Keywords

Navigation