Skip to main content
Log in

Testing biological activity of model Maillard reaction products: studies on gastric smooth muscle tissues

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Water-soluble Maillard reaction products obtained from five different model systems were investigated for their effects upon the mechanical activity of rat gastric smooth muscle. Most of the total Maillard reaction products applied at concentration of 1.5 mg/ml evoked contractions; among them the product obtained from arginine and glucose (Arg-Glc) produced the most powerful contractions. The product obtained from glycine and ascorbic acid (Gly-AsA) was the only one that brought about relaxation response. The high molecular weight fractions (>3,500 Da) isolated from the reaction systems Arg-Glc and Gly-AsA demonstrated effects similar in type and amplitude to those evoked by non-fractioned reaction products. The results obtained suggest that moieties of molecules acting upon the muscle tonus originate mainly from lysine and arginine residues; that these structures are available in both low and high molecular pools in similar concentrations, and most likely these fragments act upon membrane-located cellular structures involved in calcium transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

MRP:

Maillard reaction product

SMP:

Smooth muscle preparation

FTIR:

Fourier-transform infrared spectroscopy

References

  • Akbarali HI (2005) Signal-transduction pathways that regulate smooth muscle function. II. Receptor-ion channel coupling mechanisms in gastrointestinal smooth muscle. Am J Physiol Gastrointest Liver Physiol 288:G598–G602. doi:10.1152/ajpgi.00402.2004

    CAS  Google Scholar 

  • Ames JM, Wynne A, Hofmann A, Plos S, Gibson GR (1999) The effect of a model melanoidin mixture on faecal bacterial populations in vitro. Br J Nutr 82:489–495

    CAS  PubMed  Google Scholar 

  • Argirov OK, Lin B, Olesen P, Ortwerth BJ (2003) Isolation and characterization of a new advanced glycation endproduct of dehydroascorbic acid and lysine. Biochim Biophys Acta 1620:235–244

    CAS  PubMed  Google Scholar 

  • Argirova MD, Kerina II, Argirov OK (1999) Formation of advanced glycation endproducts from low molecular weight model compounds. Bioorg Chem 27:443–450. doi:10.1006/bioo.1999.1148

    Article  CAS  Google Scholar 

  • Bergmann R, Helling R, Heichert C, Scheunemann M, Mäding P, Wittrisch H, Johannsen B, Henle T (2001) Radio fluorination and positron emission tomography (PET) as a new approach to study the in vivo distribution and elimination of the advanced glycation endproducts N epsilon-carboxymethyllysine (CML) and N epsilon-carboxyethyllysine (CEL). Nahrung 45:182–188. doi:10.1002/1521-3803(20010601)45:3<182::AID-FOOD182>3.0.CO;2-Q

    Article  CAS  PubMed  Google Scholar 

  • Borrelli RC, Mennella C, Barba F, Russo M, Russo GL, Krome K, Erbersdobler HF, Faist V, Fogliano V (2003) Characterization of coloured compounds obtained by enzymatic extraction of bakery products. Food Chem Toxicol 41:1367–1374. doi:10.1016/S0278-6915(03)00140-6

    Article  CAS  PubMed  Google Scholar 

  • Boyer RF (1986) Modern Experimental Biochemistry, 1st ed. edn. Addison-Wesley, New York, pp 515–521

    Google Scholar 

  • Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820. doi:10.1038/414813a

    Article  CAS  PubMed  Google Scholar 

  • Cämmerer B, Kroh LW (1995) Investigation of the influence of reaction conditions on the elementary composition of melanoidins. Food Chem 53:55–59. doi:10.1016/0308-8146(95)95786-6

    Article  Google Scholar 

  • Delgado-Andrade C, Seiquer I, Navarro MP (2005) Comparative effects of glucose-lysine versus glucose-methionine Maillard reaction products consumption: in vitro and in vivo calcium availability. Mol Nutr Food Res 49:679–684. doi:10.1002/mnfr.200400100

    Article  CAS  PubMed  Google Scholar 

  • Faist V, Lindenmeier M, Geisler C, Erbersdobler HF, Hofman T (2002) Influence of molecular weight fractions isolated from roasted malt on the enzyme activities of NADPH-cytochrome c-reductase and glutathione-S-transferase in Caco-2 cells. J Agric Food Chem 50:602–606. doi:10.1021/jf010879h

    Article  CAS  PubMed  Google Scholar 

  • Finot PA (1990) Metabolism and physiological effects of Maillard reaction products. In: Finot PA, Aeschbacher HU, Hurrell RF, Liardon R (eds) The Maillard reaction in food processing, human nutrition and physiology. Birkhauser Verlag, Basel, pp 291–296

    Google Scholar 

  • Finot PA, Magnenat E (1981) Metabolic transit of early and advanced Maillard products. Prog Food Nutr Sci 5:193–207

    CAS  PubMed  Google Scholar 

  • Forster A, Kuhne Y, Henle T (2005) Studies on absorption and elimination of dietary Maillard reaction products. Ann N Y Acad Sci 1043:474–481. doi:10.1196/annals.1333.054

    Article  PubMed  Google Scholar 

  • Friedman M (2004) Application of the ninhydrin reaction for analysis of amino acids, peptides, and proteins to agricultural and biomedical sciences. J Agric Food Chem 52:385–406. doi:10.1021/jf030490p

    Article  CAS  PubMed  Google Scholar 

  • Glomb MA, Rösch D, Nagaraj RH (2001) N-(5-Hydroxy-4, 6-dimethylpyrimidine-2-yl)-L-ornithine, a novel methylglyoxal-arginine modification in beer. J Agric Food Chem 49:366–372. doi:10.1021/jf000493r

    Article  CAS  PubMed  Google Scholar 

  • Hofmann T, Ames J, Krome K, Faist V (2001) Determination of the molecular weight distribution of non-enzymatic browning products formed by roasting of glucose and glycine and studies on their effects on NADPH-cytochrome c-reductase and glutathione-S-transferase in Caco-2 cells. Nahrung 45:189–194. doi:10.1002/1521-3803(20010601)45:3<189::AID-FOOD189>3.0.CO;2-Z

    Article  CAS  PubMed  Google Scholar 

  • Kitts DD, Wu CH, Powrie WD (1993) Effect of glucose-lysine Maillard reaction product fractions on tissue xenobiotic enzyme systems. J Agric Food Chem 41:2359–2363. doi:10.1021/jf00036a027

    Article  CAS  Google Scholar 

  • Koschinsky T, He C-J, Mitsuhashi T, Bucala R, Liu C, Buenting C, Heitmann K, Vlassara H (1997) Orally absorbed reactive glycation products (glycotoxins): an environmental risk factor in diabetic nephropathy. Proc Natl Acad Sci USA 94:6474–6479. doi:10.1073/pnas.94.12.6474

    Article  CAS  PubMed  Google Scholar 

  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and developmental settings. Adv Drug Deliv Rev 46:3–25. doi:10.1016/S0169-409X(00)00129-0

    Article  Google Scholar 

  • Miura M, Gomyo T (1990) Effect of melanoidin on cholesterol in plasma, liver and feces in rats fed a high-cholesterol diet. In: Finot PA, Aeschbacher HU, Hurrell RF, Liardon R (eds) The Maillard reaction in food processing, human nutrition and physiology. Birkhauser Verlag, Basel, pp 291–296

    Google Scholar 

  • O’Brien J, Morrissey PA (1997) Metal ion complexation by products of the Maillard reaction. Food Chem 58:17–27. doi:10.1016/S0308-8146(96)00162-8

    Article  Google Scholar 

  • O’Brien J, Walker R (1988) Toxicological effects of dietary Maillard reaction products in the rat. Food Chem Toxicol 26:775–783. doi:10.1016/0278-6915(88)90213-X

    Article  PubMed  Google Scholar 

  • Obretenov C, Demyttenaere J, Tehrani KA, Adams A, Keršiene M, De Kimpe N (2002) Flavor release in the presence of melanoidins prepared from L-(+)-ascorbic acid and amino acids. J Agric Food Chem 50:4244–4250. doi:10.1021/jf0200366

    Article  CAS  PubMed  Google Scholar 

  • Pischetsrieder M (1996) Reaction of L-ascorbic acid with L-arginine derivatives. J Agric Food Chem 44:2081–2085. doi:10.1021/jf960141d

    Article  CAS  Google Scholar 

  • Reihl O, Lederer MO, Schwack W (2004) Characterization and detection of lysine-arginine cross-links derived from dehydroascorbic acid. Carbohydr Res 339:483–491. doi:10.1016/j.carres.2003.12.004

    Article  CAS  PubMed  Google Scholar 

  • Somoza V (2005) Five years of research on health risks and benefits of Maillard Reaction Products - an update. Mol Nutr Food Res 49:663–672. doi:10.1002/mnfr.200500034

    Article  CAS  PubMed  Google Scholar 

  • Thorpe SR, Baynes JW (1996) Role of the Maillard reaction in diabetes mellitus and diseases of aging. Drugs Aging 9:69–77. doi:10.2165/00002512-199609020-00001

    Article  CAS  PubMed  Google Scholar 

  • Vitek P, Bhattacharaya K, Glendening JM, Stopa E, Vlassara H, Bucala R, Anogue K, Cerami A (1994) Advanced glycation end products contribute to amyloidosis in Alzheimer disease. Proc Natl Acad Sci USA 91:4766–4770. doi:10.1073/pnas.91.11.4766

    Article  CAS  PubMed  Google Scholar 

  • Westwood ME, Argirov OK, Abordo EA, Thornalley PJ (1997) Methylglyoxal-modified arginine residues–a signal for receptor-mediated endocytosis and degradation of proteins by monocytic THP-1 cells. Biochim Biophys Acta 1356:84–94. doi:10.1016/S0167-4889(96)00154-1

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana D. Argirova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Argirova, M.D., Stefanova, I.D., Krustev, A.D. et al. Testing biological activity of model Maillard reaction products: studies on gastric smooth muscle tissues. Amino Acids 38, 797–803 (2010). https://doi.org/10.1007/s00726-009-0286-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-009-0286-z

Keywords

Navigation