Skip to main content
Log in

Determining important regulatory relations of amino acids from dynamic network analysis of plasma amino acids

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The changes in the concentrations of plasma amino acids do not always follow the flow-based metabolic pathway network. We have previously shown that there is a control-based network structure among plasma amino acids besides the metabolic pathway map. Based on this network structure, in this study, we performed dynamic analysis using time-course data of the plasma samples of rats fed single essential amino acid deficient diet. Using S-system model (conceptual mathematical model represented by power-law formalism), we inferred the dynamic network structure which reproduces the actual time-courses within the error allowance of 13.17%. By performing sensitivity analysis, three of the most dominant relations in this network were selected; the control paths from leucine to valine, from methionine to threonine, and from leucine to isoleucine. This result is in good agreement with the biological knowledge regarding branched-chain amino acids, and suggests the biological importance of the effect from methionine to threonine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Brindle JT, Antti H, Holmes E, Tranter G, Nicholson JK, Bethell HW, Clarke S, Schofield PM, McKilligin E, Mosedale DE, Grainger DJ (2002) Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics. Nat Med 8:1439–1444. doi:10.1038/nm802

    Article  CAS  PubMed  Google Scholar 

  • Brosnan JT, Brosnan ME (2006) Branched-chain amino acids: enzyme and substrate regulation. J Nutr 136:207S–211S

    CAS  PubMed  Google Scholar 

  • Cooper GF, Herskovits E (1992) A Bayesian method for the induction of probabilistic networks from data. Mach Learn 9:309

    Google Scholar 

  • Dahlquist KD, Salomonis N, Vranizan K, Lawlor SC, Conklin BR (2002) GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways. Nat Genet 31:19–20. doi:10.1038/ng0502-19

    Article  CAS  PubMed  Google Scholar 

  • Felig P (1975) Amino acid metabolism in man. Annu Rev Biochem 44:933–955. doi:10.1146/annurev.bi.44.070175.004441

    Article  CAS  PubMed  Google Scholar 

  • Ferenci P, Wewalka F (1978) Plasma amino acids in hepatic encephalopathy. J Neural Transm Suppl 14:87–94

    CAS  PubMed  Google Scholar 

  • Friedman N, Linial M, Nachman I, Pe’er D (2000) Using Bayesian networks to analyze expression data. J Comput Biol 7:601–620. doi:10.1089/106652700750050961

    Article  CAS  PubMed  Google Scholar 

  • Harris RA, Joshi M, Jeoung NH (2004) Mechanisms responsible for regulation of branched-chain amino acid catabolism. Biochem Biophys Res Commun 313:391–396. doi:10.1016/j.bbrc.2003.11.007

    Article  CAS  PubMed  Google Scholar 

  • Holm E, Sedlaczek O, Grips E (1999) Amino acid metabolism in liver disease. Curr Opin Clin Nutr Metab Care 2:47–53. doi:10.1097/00075197-199901000-00009

    Article  CAS  PubMed  Google Scholar 

  • Hong SY, Yang DH, Chang SK (1998) The relationship between plasma homocysteine and amino acid concentrations in patients with end-stage renal disease. J Ren Nutr 8:34–39. doi:10.1016/S1051-2276(98)90035-8

    Article  CAS  PubMed  Google Scholar 

  • Imoto S, Goto T, Miyano S (2002) Estimation of genetic networks and functional structures between genes by using Bayesian networks and nonparametric regression. Pac Symp Biocomput, pp 175–186

  • Katz RS, Baker DH (1975) Methionine toxicity in the chick: nutritional and metabolic implications. J Nutr 105:1168–1175

    CAS  PubMed  Google Scholar 

  • Kikuchi S, Tominaga D, Arita M, Takahashi K, Tomita M (2003) Dynamic modeling of genetic networks using genetic algorithm and S-system. Bioinformatics 19:643–650. doi:10.1093/bioinformatics/btg027

    Article  CAS  PubMed  Google Scholar 

  • Maki Y, Tominaga D, Okamoto M, Watanabe S, Eguchi Y (2001) Development of a system for the inference of large scale genetic networks. Pac Symp Biocomput, pp 446–458

  • Maki Y, Takahashi Y, Arikawa Y, Watanabe S, Aoshima K, Eguchi Y, Ueda T, Aburatani S, Kuhara S, Okamoto M (2004) An integrated comprehensive workbench for inferring genetic networks: VoyaGene. J Bioinform Comput Biol 2:533–550. doi:10.1142/S0219720004000727

    Article  CAS  PubMed  Google Scholar 

  • Nakatsui M, Ueda T, Maki Y, Ono I, Okamoto M (2008) Method for inferring and extracting reliable genetic interactions from time-series profile of gene expression. Math Biosci 215:105–114. doi:10.1016/j.mbs.2008.06.007

    Article  CAS  PubMed  Google Scholar 

  • Nicholson JK, Lindon JC, Holmes E (1999) ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29:1181–1189. doi:10.1080/004982599238047

    Article  CAS  PubMed  Google Scholar 

  • Noguchi Y, Zhang QW, Sugimoto T, Furuhata Y, Sakai R, Mori M, Takahashi M, Kimura T (2006) Network analysis of plasma and tissue amino acids and the generation of an amino index for potential diagnostic use. Am J Clin Nutr 83:513S–519S

    CAS  PubMed  Google Scholar 

  • Obeid OA (2005) Plasma amino acid concentrations in patients with coronary heart disease: a comparison between U.K. Indian Asian and Caucasian men. Int J Vitam Nutr Res 75:267–273. doi:10.1024/0300-9831.75.4.267

    Article  CAS  PubMed  Google Scholar 

  • Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M (1999) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 27:29–34

    Article  CAS  PubMed  Google Scholar 

  • Ohtsuka Y, Agishi Y (1992) Abnormal amino acid metabolism in diabetes mellitus. Nippon Rinsho 50:1631–1636

    CAS  PubMed  Google Scholar 

  • Ono I, Kobayashi S (1997) A real-coded genetic algorithm for function optimization using unimodal distribution crossover. 7th ICGA pp 249–253

  • Parker PJ, Randle PJ (1978) Inactivation of rat heart branched-chain 2-oxoacid dehydrogenase complex by adenosine triphosphate. FEBS Lett 95:153–156. doi:10.1016/0014-5793(78)80072-6

    Article  CAS  PubMed  Google Scholar 

  • Sato H, Ono I, Kobayashi S (1997) A new generation alternation model of genetic algorithm and its assessment. J. Jpn Soc Artif Intell 12:734–744

    Google Scholar 

  • Savageau MA (1976) Biochemical systems analysis: a study of function and design in molecular biology. Addison-Wesley, Reading

    Google Scholar 

  • Savageau MA (1998) Rules for the evolution of gene circuitry. Pac Symp Biocomput, pp 54–65

  • Shikata N, Maki Y, Noguchi Y, Mori M, Hanai T, Takahashi M, Okamoto M (2007) Multi-layered network structure of amino acid (AA) metabolism characterized by each essential AA-deficient condition. Amino Acids 33:113–121. doi:10.1007/s00726-006-0412-0

    Article  CAS  PubMed  Google Scholar 

  • Soeters PB, Fischer JE (1976) Insulin, glucagon, aminoacid imbalance, and hepatic encephalopathy. Lancet 2:880–882. doi:10.1016/S0140-6736(76)90541-9

    Article  CAS  PubMed  Google Scholar 

  • Soltesz G, Schultz K, Mestyan J, Horvath I (1978) Blood glucose and plasma amino acid concentrations in infants of diabetic mothers. Pediatrics 61:77–82

    CAS  PubMed  Google Scholar 

  • Somogyi R, Sniegoski CA (1996) Modeling the complexity of genetic networks: understanding multigenetic and pleiotropic regulation. Complexity 1:45–63

    Google Scholar 

  • Ueda T, Koga N, Ono I, Okamoto M (2002) Efficient numerical optimization technique based on real-coded genetic altorithm for inverse problem. 7th international symposium on artificial life and robotics (AROB 7th ‘02), 290–293

  • Watanabe A, Higashi T, Sakata T, Nagashima H (1984) Serum amino acid levels in patients with hepatocellular carcinoma. Cancer 54:1875–1882. doi:10.1002/1097-0142(19841101)54:9<1875::AID-CNCR2820540918>3.0.CO;2-O

    Article  CAS  PubMed  Google Scholar 

  • Weinlich G, Murr C, Richardsen L, Winkler C, Fuchs D (2007) Decreased serum tryptophan concentration predicts poor prognosis in malignant melanoma patients. Dermatology 214:8–14. doi:10.1159/000096906

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This work was partially supported by Grants-in-Aid for Scientific Research (c) [No. 18500228(YM)] and Scientific Research on Priority Areas, ‘New IT Infrastructure for the Information-explosion Era’ [No. 18049073(MO)] from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Okamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shikata, N., Maki, Y., Nakatsui, M. et al. Determining important regulatory relations of amino acids from dynamic network analysis of plasma amino acids. Amino Acids 38, 179–187 (2010). https://doi.org/10.1007/s00726-008-0226-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-008-0226-3

Keywords

Navigation