Skip to main content
Log in

Papaya latex enzymes capable of detoxification of gliadin

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Assay of fractions obtained from ion exchange chromatography of papaya latex on CM Sephadex-C50, size exclusion chromatography on Sephacryl S-300 and size exclusion HPLC have provided an insight into the relative contributions of the gluten-detoxifying enzymes present. This outcome has been achieved by the use of the above chromatographic techniques, coupled with assays of lysosomal activity, protease activity using benzylarginine ethyl ester (BAEE) as substrate, prolyl endopeptidase (PEP) using glycylprolylnitroanilide and a prolidase assay using acetylprolylglycine. These procedures have shown that the activity in papaya latex is due largely to caricain and to a lesser extent, chymopapain and glutamine cyclotransferase. The presence of caricain and these other enzymes was confirmed by mass spectrometry of trypsin digests of the most active fraction obtained by CM Sephadex-C50 chromatography and size exclusion HPLC. Fractions rich in caricain would be suitable for enzyme therapy in gluten intolerance and appear to have synergistic action with porcine intestinal extracts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arnon R (1970) The cysteine proteases: papain. Methods Enzymol 19:226–244

    Article  Google Scholar 

  • Auricchio S, Cardelli M, De Ritis G, De Vincenzi M, Lattes F, Silvano V (1984) An in vitro animal model for the study of cereal components toxic in coeliac disease. Pediatr Res 18:1372–1378

    Article  CAS  PubMed  Google Scholar 

  • Cornell HJ (1998) Partial in vitro digestion of active gliadin-related peptides in coeliac disease. J Protein Chem 17:739–744

    Article  CAS  PubMed  Google Scholar 

  • Cornell HJ (2005) The aetiology of coeliac disease and its significance for therapy. Curr Top Pept Protein Res 7:17–21

    Google Scholar 

  • Cornell HJ, Townley RRW (1973) The effect of gliadin peptides on rat liver lysosomes in relation to the pathogenesis of coeliac disease. Clin Chim Acta 49:181–188

    Article  CAS  PubMed  Google Scholar 

  • Cornell HJ, Mothes T (1993) The activity of wheat gliadin peptides in in vitro assays for coeliac disease. Biochim Biophys Acta 1181:169–173

    CAS  PubMed  Google Scholar 

  • Cornell HJ, Mothes (1995) Further studies of the in vitro activity of synthetic gliadin peptides in coeliac disease. Biochim Biophys Acta 1270:168–172

    PubMed  Google Scholar 

  • Cornell HJ, Rivett DE (1995) In vitro mucosal digestion of synthetic gliadin-derived peptides in coeliac disease. J Protein Chem 14:335–339

    Article  CAS  PubMed  Google Scholar 

  • Cornell HJ, Stelmasiak T (2004) Enzyme supplementation in coeliac disease. In: The 11th international symposium on coeliac disease, Belfast, Northern Ireland, April 28–30, p 196

  • Cornell HJ, Stelmasiak T (2007) A unified hypothesis of coeliac disease with implications for management of patients. Amino Acids 33:43–49

    Article  CAS  PubMed  Google Scholar 

  • Cornell HJ, Macrae FA, Melny J, Pizzey C, Cook F, Mason S, Bhathal P, Stelmasiak T (2005) Enzyme therapy for management of coeliac disease. Scand J Gastroenterol 40:1304–1312

    Article  CAS  PubMed  Google Scholar 

  • Dubey VK, Pande M, Singh BK, Jagannadham MV (2007) Papain-like proteases: applications of their inhibitors. Afr J Biotechnol 6:1077–1086

    CAS  Google Scholar 

  • Ebata M, Yasunobu KT (1962) Chymopapain. I. Isolation, crystallization and preliminary characterization. J Biol Chem 237:1086–1094

    CAS  PubMed  Google Scholar 

  • Groves MR, Taylor MA, Scott M, Cummings NJ, Pickersgill RW, Jenkins JA (1996) The prosequence of procaricain forms and alpha-helical domain that prevents access to the substrate-binding cleft. Structure 4:1193–1203

    Article  CAS  PubMed  Google Scholar 

  • Ikeuchi Y, Katerelos NA, Goodenough PW (1998) The enhancing of a cysteine proteinase activity at acidic pH by protein engineering, the role of glutamic 50 in the enzyme mechanism of caricain. FEBS Lett 437:91–96

    Article  CAS  PubMed  Google Scholar 

  • Kocna P, Frič P (1980) Endopeptidase of the brush border membrane of Rat Enterocyte. Hoppe-Seyler’s Z Physiol Chem 361:1401–1412

    CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • McLachlan A, Cullis PG, Cornell HJ (2002) The use of extended motifs for focussing on toxic peptides in coeliac disease. J Biochem Mol Biol Biophys 6:319–324

    Article  CAS  PubMed  Google Scholar 

  • Maurer HR (2001) Bromelain: biochemistry, pharmacology and medical use. Cell Mol Life Sci 58:1234–1245

    Article  CAS  PubMed  Google Scholar 

  • Messer M, Baume PE (1976) Oral papain in gluten intolerance. Lancet ii:1022

    Article  Google Scholar 

  • Messer M, Anderson CM, Hubbard L (1964) Studies on the mechanism of destruction of the toxic action of wheat gluten in coeliac disease by crude papain. Gut 5:295–303

    Article  CAS  PubMed  Google Scholar 

  • Oberg KA, Ruysschaert J-M, Azarkan M, Smolders N, Zerhouni N, Wintjens R, Amrani A, Looze Y (1998) Papaya glutamine cyclase, a plant enzyme highly resistant to proteolysis, adopts an all-β conformation. Eur J Biochem 258:214–222

    Article  CAS  PubMed  Google Scholar 

  • Prabucka B, Bielawski W (2004) Purification and partial characterisation of a major gliadin-degrading cysteine endopeptidase from germinating triticale seeds. Acta Physiol Plant 26:383–392

    Article  CAS  Google Scholar 

  • Robyt JF, White BJ (1987) Biochemical techniques—theory and practice. Brooks/Cole Publishing Company, California, pp 151–155

    Google Scholar 

  • Sjöström H, Norem O, Josefsson L (1973) Purification and specificity of pig intestinal prolidase. Biochim Biophys Acta 327:457–470

    PubMed  Google Scholar 

  • Szeltner Z, Renner V, Polgar L (2000) Substrate and pH dependent contribution of oxyanion binding site to the catalysis of prolyl oligopeptidase, a paradigm of the serine oligopeptidase family. Protein Sci 9:353–360

    CAS  PubMed  Google Scholar 

  • Szwajcer-Dey E, Rasmussen J, Meldal M, Breddam K (1992) Proline-specific endopeptidases from microbial sources: isolation of an enzyme from xanthomonas sp. J Bacteriol 174:2454–2459

    CAS  PubMed  Google Scholar 

  • Zerhouni S, Amrani A, Nijs M, Smolders N, Azarkan M, Vincentelli J, Looze Y (1998) Purification and characterization of papaya glutamine cyclotransferase, a plant enzyme highly resistant to chemical acid and thermal denaturation. BBA 1387:275–290

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the generosity of Glutagen Pty Ltd for funding to allow most of this work to be carried out at Bio 21 Institute, Parkville. They are also grateful to Dr. Paul O’Donnell for conducting the mass spectrometry there and to Dr. Denis Scanlon for expert assistance with the HPLC. We are also grateful to Dr. Robert Moritz of the Ludwig Institute For Cancer Research, Parkville, Australia, for the MS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. J. Cornell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cornell, H.J., Doherty, W. & Stelmasiak, T. Papaya latex enzymes capable of detoxification of gliadin. Amino Acids 38, 155–165 (2010). https://doi.org/10.1007/s00726-008-0223-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-008-0223-6

Keywords

Navigation