Skip to main content

Advertisement

Log in

Leucine affects the fibroblastic Vero cells stimulating the cell proliferation and modulating the proteolysis process

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Branched-chain amino acids, especially leucine, exert regulatory influences on protein and carbohydrate metabolism, ribosome biogenesis and gene expression. This study investigated the effects of leucine in fibroblastic cells analysing viability, proliferation, morphology, proteolysis enzymes activities and protein turnover. After exposure to culture medium enriched with 25 or 50 μM leucine for 24, 48 and 72 h, Vero cells have no alterations on viability and morphology. Leucine-treated cells showed increase on alkaline phosphatase activity and proliferation. The protein synthesis was slightly increased, whereas the protein degradation showed a deep reduction after leucine incubation. The chymotrypsin-like, cathepsin B and H and calpain activities were decreased in leucine-treated cells. In conclusion, the proteolytic pathways and the total protein degradation were modulated by leucine in Vero cells. Our observations support the concept that Vero cells may represent a new model for protein turnover study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anthony TG, Anthony JC, Yoshizawa F, Kimball SR, Jefferson LS (2001) Oral administration of leucine stimulates ribosomal protein mRNA translation but not global rates of protein synthesis in the liver of rats. J Nutr 131:1171–1176

    CAS  PubMed  Google Scholar 

  • Avruch J, Long X, Ortiz-Vega S, Rapley J, Papageorgiou A, Daí N (2008) Amino acid regulation of TOR complex 1. Am J Physiol Endocrinol Metab. doi:10.1152/ajpendo.90645.2008

  • Barrett AJ (1980) Fluorimetric assays for cathepsin B and cathepsin H with methylcoumarylamide substrates. Biochem J 187:909–912

    CAS  PubMed  Google Scholar 

  • Bechet D, Tassa A, Taillandier D, Combaret L, Attaix D (2005) Lysosomal proteolysis in skeletal muscle. Int J Biochem Cell Biol 37:2098–2114

    Article  CAS  PubMed  Google Scholar 

  • Biolo G, De Cicco M, Dal Mas V, Lorenzon S, Antonione R, Ciocchi B, Barazzoni R, Zanetti M, Dore F, Guarnieri G (2006) Response of muscle protein and glutamine kinetics to branched-chain-enriched amino acids in intensive care patients after radical cancer surgery. Nutrition 22:475–482

    Article  CAS  PubMed  Google Scholar 

  • Bolster DR, Jefferson LS, Kimball SR (2004) Regulation of protein synthesis associated with skeletal muscle hypertrophy by insulin-, amino acid- and exercise-induced signalling. Proc Nutr Soc 63:351–356

    Article  CAS  PubMed  Google Scholar 

  • Calhau C, Martel F, Hipólito-Reis C, Azevedo I (2002) Modulation of uptake of organic cationic drugs in cultured human colon adenocarcinoma Caco-2 cells by an ecto-alkaline phosphatase activity. J Cell Biochem 87:408–416

    Article  CAS  PubMed  Google Scholar 

  • Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296:1655–1657

    Article  CAS  PubMed  Google Scholar 

  • Chwieralski CE, Welte T, Bühling F (2006) Cathepsin-regulated apoptosis. Apoptosis 11:143–149

    Article  CAS  PubMed  Google Scholar 

  • Costelli P, Tullio RD, Baccino FM, Melloni E (2001) Activation of Ca(2+)-dependent proteolysis in skeletal muscle and heart in cancer cachexia. Br J Cancer 84:946–950

    Article  CAS  PubMed  Google Scholar 

  • Gad SC, Weil CS (1994) Statistics for toxicologists. In: Wallace H (ed) Principles and methods of toxicology. Raven Press, New York

    Google Scholar 

  • Gomes-Marcondes MC, Smith HJ, Cooper JC, Tisdale MJ (2002) Development of an in-vitro model system to investigate the mechanism of muscle protein catabolism induced by proteolysis-inducing factor. Br J Cancer 86:1628–1633

    Article  CAS  PubMed  Google Scholar 

  • Gomes-Marcondes MC, Ventrucci G, Toledo MT, Cury L, Cooper JC (2003) A leucine-supplemented diet improved protein content of skeletal muscle in young tumour-bearing rats. Braz J Med Biol Res 36:1589–1594

    Article  CAS  PubMed  Google Scholar 

  • Harper AE, Miller RH, Block KP (1984) Branched-chain amino acid metabolism. Ann Rev Nutr 4:409–454

    Article  CAS  Google Scholar 

  • Hasselgren PO, Fischer JE (2001) Muscle cachexia: current concepts of intracellular mechanisms and molecular regulation. Ann Surg 233:9–17

    Article  CAS  PubMed  Google Scholar 

  • Ichihara A (1999) BCA, HGF, and proteasomes. Biochem Biophys Res Commun 266:647–651

    Article  CAS  PubMed  Google Scholar 

  • Jagoe RT, Goldberg AL (2001) What do we really know about the ubiquitin proteasome pathway in muscle atrophy. Curr Opin Clin Nutr Metab Care 4:183–190

    Article  CAS  PubMed  Google Scholar 

  • Jiang ST, Wang JH, Chang T, Chen CS (1997) A continuous method for measuring calpain activity. Anal Biochem 244:233–238

    Article  CAS  PubMed  Google Scholar 

  • Kadowaki M, Kanazawa T (2003) Amino acids as regulators of proteolysis. J Nutr 133:2052S–2056S

    CAS  PubMed  Google Scholar 

  • Kanazawa T, Taneike I, Akaishi R, Yoshizawa F, Furuya N, Fujimura S, Kadowaki M (2004) Amino acids and insulin control autophagic proteolysis through different signaling pathways in relation to mTOR in isolated rat hepatocytes. J Biol Chem 279:8452–8459

    Article  CAS  PubMed  Google Scholar 

  • Kim E, Goraksha-Hicks P, Li L, Neufeld TP, Guan KL (2008) Regulation of TORC1 by Rag GTPases in nutrient response. Nature Cell Biol 10:935–955

    Article  CAS  PubMed  Google Scholar 

  • Kimball SR, Jefferson LS (2006) New functions for amino acids: effects on gene transcription and translation. Am J Clin Nutr 83:500S–507S

    CAS  PubMed  Google Scholar 

  • Kimura M, Ogihara M (2005) Effects of branched-chain amino acids on DNA synthesis and proliferation in primary cultures of adult rat hepatocytes. Eur J Pharmacol 510:167–180

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi H, Kato H, Hirabayashi Y, Murakami H, Suzuki H (2006) Modulations of muscle protein metabolism by branched-chain amino acids in normal and muscle-atrophying rats. J Nutr 136:234S–236S

    CAS  PubMed  Google Scholar 

  • Layman DK, Baum JI (2004) Dietary protein impact on glycemic control during weight loss. J Nutr 134:968S–973S

    CAS  PubMed  Google Scholar 

  • Lecker SH, Solomon V, Mitch WE, Goldberg AL (1999) Muscle protein breakdown and the critical role of the ubiquitin-proteasome pathway in normal and disease states. J Nutr 129:227–237

    Google Scholar 

  • Lowell BB, Ruderman NB, Goodman MN (1986) Evidence that lysosomes are not involved in the degradation of myofibrillar proteins in rat skeletal muscle. Biochem J 234:237–240

    CAS  PubMed  Google Scholar 

  • Lowry O, Rosebrough NJ, Farr AL, Randall RL (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Martins MJ, Negrão MR, Hipólito-Reis C, Azevedo I (2001) Arginine and a polyarginine peptide inhibit alkaline phosphatase activity: possible consequences for cellular transport systems. Clin Biochem 34:435–437

    Article  CAS  PubMed  Google Scholar 

  • May ME, Buse MG (1989) Effects of branched-chain amino acids on protein turnover. Diabetes Metab Rev 5:227–245

    Article  CAS  PubMed  Google Scholar 

  • Meijer AJ, Codogno P (2004) Regulation and role of autophagy in mammalian cells. Int J Biochem Cell Biol 36:2445–2462

    Article  CAS  PubMed  Google Scholar 

  • Meijer AJ, Codogno P (2006) Signalling and autophagy regulation in health, aging and disease. Mol Aspects Med 27:411–425

    Article  CAS  PubMed  Google Scholar 

  • Meijer AJ, Codogno P (2008) Nutrient sensing: TOR’s ragtime. Nat Cell Biol 10:881–883

    Article  CAS  PubMed  Google Scholar 

  • Mordier S, Deval C, Bechet D, Tassa A, Ferrara M (2000) Leucine limitation induces autophagy and activation of lysosome-dependent proteolysis in C2C12 myotubes through a mammalian target of rapamycin-independent signaling pathway. J Biol Chem 275:29900–29906

    Article  CAS  PubMed  Google Scholar 

  • Murakami N, Fukuchi S, Takeuchi K, Hori T, Shibamoto S, Ito F (1998) Antagonistic regulation of cell migration by epidermal growth factor and glucocorticoid in human gastric carcinoma cells. J Cell Physiol 176:127–136

    Article  CAS  PubMed  Google Scholar 

  • Nakai N, Shimomura Y, Tamura T, Tamura N, Hamada K, Kawano F, Ohira Y (2006) Leucine-induced activation of translational initiation is partly regulated by the branched-chain alpha-keto acid dehydrogenase complex in C2C12 cells. Biochem Biophys Res Commun 343:1244–1250

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Ishida A, Yamazaki M, Abe H (2005) Leucine suppresses myofibrillar proteolysis by down-regulating ubiquitin-proteasome pathway in chick skeletal muscles. Biochem Biophys Res Commun 336:660–666

    Article  CAS  PubMed  Google Scholar 

  • Orino E, Tanaka K, Tamura T, Sone S, Ogura T, Ichihara A (1991) ATP-dependent reversible association of proteasomes with multiple protein components to form 26S complexes that degrade ubiquitinated proteins in human HL-60 cells. FEBS Lett 284:206–210

    Article  CAS  PubMed  Google Scholar 

  • Proud CG (2007) Amino acids and mTOR signalling in anabolic function. Biochem Soc Trans 35:1187–1190

    Article  CAS  PubMed  Google Scholar 

  • Rosen H (1957) A modified ninhydrin colorimetric analysis for amino acids. Arch Biochem Biophys 67:10–15

    Article  CAS  PubMed  Google Scholar 

  • Smith HJ, Wyke SM, Tisdale MJ (2004) Mechanism of the attenuation of proteolysis-inducing factor stimulated protein degradation in muscle by β-hydroxy-β-methylbutyrate. Cancer Res 64:8731–8735

    Article  CAS  PubMed  Google Scholar 

  • Smith HJ, Mukerji P, Tisdale MJ (2005) Attenuation of proteasome-induced proteolysis in skeletal muscle by β-hydroxy-β-methylbutyrate in cancer-induced muscle loss. Cancer Res 65:277–283

    Article  CAS  PubMed  Google Scholar 

  • Stipanuk MH (2007) Leucine and protein synthesis: mTOR and beyond. Nutr Rev 65:122–129

    Article  PubMed  Google Scholar 

  • Stoka V, Turk V, Turk B (2007) Lysosomal cysteine cathepsins: signalling pathways in apoptosis. Biol Chem 388:555–560

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Zemel MB (2007) Leucine and calcium regulate fat metabolism and energy partitioning in murine adipocytes and muscle cells. Lipids 42:297–305

    Article  CAS  PubMed  Google Scholar 

  • Toledo MT, Gomes-Marcondes MCC (2004) Placental glycogen metabolism changes during Walker tumour growth. Placenta 25:456–462

    Article  CAS  PubMed  Google Scholar 

  • Ventrucci G, Mello MA, Gomes-Marcondes MC (2001) Effects of leucine-supplemented diet on body composition changes in pregnant rats bearing Walker 256 tumor. Braz J Med Biol Res 34:333–338

    Article  CAS  PubMed  Google Scholar 

  • Ventrucci G, Mello MA, Gomes-Marcondes MC (2004) Proteasome activity is altered in skeletal muscle tissue of tumour-bearing rats fed a leucine-rich diet. Endocr Relat Cancer 11:887–895

    Article  CAS  PubMed  Google Scholar 

  • Ventrucci G, Mello MA, Gomes-Marcondes MC (2007) Leucine-rich diet alters the eukaryotic translation initiation factors expression in skeletal muscle of tumour-bearing rats. BMC Cancer 7:42

    Article  PubMed  Google Scholar 

  • White ME, Allen CE, Dayton WR (1988) Effect of sera from fed and fasted pigs on proliferation and protein turnover in cultured myogenic cells. J Anim Sci 66:34–42

    CAS  PubMed  Google Scholar 

  • Williams AB, Decourten-Myers GM, Fischer JE, Luo G, Sun X, Hasselgren PO (1999) Sepsis stimulates release of myofilaments in skeletal muscle by a calcium-dependent mechanism. FASEB J 13:1435–1443

    CAS  PubMed  Google Scholar 

  • Xu G, Kwon G, Marshall CA, Lin TA, Lawrence JC Jr, McDaniel ML (1998) Branched-chain amino acids are essential in the regulation of PHAS-I and p70 S6 kinase by pancreatic beta-cells. A possible role in protein translation and mitogenic signalling. J Biol Chem 273:28178–28184

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, grant # 06/06007-3) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, grant # 304000/2007-8). Dr Estela Maria Gonçalves was supported by a studentship from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, grant # 155521/2006-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Cristina Cintra Gomes-Marcondes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonçalves, E.M., Gomes-Marcondes, M.C.C. Leucine affects the fibroblastic Vero cells stimulating the cell proliferation and modulating the proteolysis process. Amino Acids 38, 145–153 (2010). https://doi.org/10.1007/s00726-008-0222-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-008-0222-7

Keywords

Navigation