Skip to main content
Log in

Dietary arginine supplementation enhances antioxidative capacity and improves meat quality of finishing pigs

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The present study was conducted to test the hypothesis that dietary arginine supplementation may improve meat quality of finishing pigs. Beginning at ~60 kg body weight, pigs were fed a corn- and soybean meal-based diet supplemented with 0, 0.5 or 1% l-arginine until they reached a body weight of ~110 kg. On the last day of the experiment, pigs were food-deprived for 16 h before blood samples were obtained for analysis of amino acids, insulin, and other metabolites. Immediately thereafter, pigs were slaughtered for determination of carcass composition, muscle biochemical parameters, and meat quality. The result showed that arginine did not affect pig growth performance or carcass traits. However, 1% arginine decreased drip loss of pork muscle at 48 h postmortem, while increasing intramuscular fat content (P < 0.05). Supplementing 0.5 or 1% arginine to the diet increased arginine concentration and decreased cortisol level in serum, while enhancing antioxidative capacity and glutathione peroxidase activity in serum (P < 0.05). Additionally, 1% arginine increased antioxidative capacity in skeletal muscle (P < 0.05). Furthermore, 0.5 or 1% arginine decreased the cortisol receptor mRNA level in muscle (P < 0.05). Collectively, these results indicate that supplemental arginine improved meat quality and attenuated oxidative stress of finishing pigs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CAT:

Catalase

CR:

Cortisol receptor

GSH-Px:

Glutathione peroxidase

IGF-IR:

Insulin-like growth factor-I receptor

MDA:

Malondialdehyde

PPARγ:

Peroxisome proliferators-activated receptor γ

SOD:

Superoxide dismutase

T-AOC:

Total antioxidant capacity

References

  • Bassit RA, Curi R, Costa Rosa LFBP (2008) Creatine supplementation reduces plasma levels of pro-inflammatory cytokines and PGE2 after a half-ironman competition. Amino Acids 35:425–431

    Article  CAS  PubMed  Google Scholar 

  • Buckley DJ, Morrissey PA, Gray JI (1995) Influence of dietary vitamin E on the oxidative stability and quality of pig meat. J Anim Sci 73:3122–3130

    CAS  PubMed  Google Scholar 

  • Carlo C, Giovannangelo O, Luigina P et al (1999) Influence of dietary vitamin e supplementation on “heavy” pig carcass characteristics, meat quality, and vitamin e status. J Anim Sci 77:1755–1761

    Google Scholar 

  • Chen J, Li X, Balnave D, Brake J (2005) The Influence of dietary sodium chloride, arginine: lysine ratio, and methionine source on apparent ileal digestibility of arginine and lysine in acutely heat-stressed broilers. Poult Sci 84:294–297

    CAS  PubMed  Google Scholar 

  • Edmonds MS, Baker DH (1987) Failure of excess dietary lysine to antagonize arginine in young pigs. J Nutr 117:1396–1401

    CAS  PubMed  Google Scholar 

  • Fang YZ, Yang S, Wu G (2002) Free radicals, antioxidants, and nutrition. Nutrition 18:872–879

    Article  CAS  PubMed  Google Scholar 

  • Flynn NE, Meininger CJ, Haynes TE, Wu G (2002) The metabolic basis of arginine nutrition and pharmacotherapy. Biomed Pharmacother 56:427–438

    Article  CAS  PubMed  Google Scholar 

  • Flynn NE, Bird JG, Guthrie AS (2008) Glucocorticoid regulation of amino acid and polyamine metabolism in the small intestine. Amino Acids. doi:10.1007/s00726-008-0206-7

  • Frank JW, Escobar J, Hguyen HV et al (2007) Oral N-carbamylglutamate supplementation increases protein synthesis in skeletal muscle of piglets. J Nutr 137:315–319

    CAS  PubMed  Google Scholar 

  • Fu WJ, Haynes TE, Kohli R et al (2005) Dietary l-arginine supplementation reduces fat mass in Zucker diabetic fatty rats. J Nutr 135:714–721

    CAS  PubMed  Google Scholar 

  • Galli F (2007) Amino acid and protein modification by oxygen and nitrogen species. Amino Acids 32:497–499

    Article  CAS  Google Scholar 

  • Gualano B, Novaes RB, Artioli GG et al (2008) Effects of creatine supplementation on glucose tolerance and insulin sensitivity in sedentary healthy males undergoing aerobic training. Amino Acids 34:245–250

    Article  CAS  PubMed  Google Scholar 

  • Hamasu K, Haraguchi T, Kabuki Y et al. (2008) l-Proline is a sedative regulator of acute stress in the brain of neonatal chicks. Amino Acids. doi:10.1007/s00726-008-0164-0

  • Han J, Liu YL, Fan W et al. (2008) Dietary l-arginine supplementation alleviates immunosuppression induced by cyclophosphamide in weaned pigs. Amino Acids. doi:10.1007/s00726-008-0184-9

  • He QH, Kong XF, Wu G et al. (2008) Metabolomic analysis of the response of growing pigs to dietary l-arginine supplementation. Amino Acids. doi:10.1007/s00726-008-0192-9

  • Hsu JM, Ding ST (2003) Effect of polyunsaturated fatty acids on the expression of transcription factor adipocyte determination and differentiation-dependent factor 1 and of lipogenic and fatty acid oxidation enzymes in porcine differentiating adipocyte. Br J Nutr 90:507–513

    Article  CAS  PubMed  Google Scholar 

  • Hu CA, Khalil S, Zhaorigetu S et al (2008a) Human ∆1-pyrroline-5-carboxylate synthase: function and regulation. Amino Acids 35:665–672

    Article  CAS  PubMed  Google Scholar 

  • Hu CA, Williams DB, Zhaorigetu S et al (2008b) Functional genomics and SNP analysis of human genes encoding proline metabolic enzymes. Amino Acids 35:655–664

    Article  CAS  PubMed  Google Scholar 

  • Jobgen WS, Fried SK, Fu WJ et al (2006) Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates. J Nutr Biochem 17:571–588

    Article  CAS  PubMed  Google Scholar 

  • Kim SW, Wu G (2004) Dietary arginine supplementation enhances the growth of milk-fed young pigs. J Nutr 134:625–630

    CAS  PubMed  Google Scholar 

  • Kim SW, Wu G (2008) Regulatory role for amino acids in mammary gland growth and milk synthesis. Amino Acids. doi:10.1007/s00726-008-0151-5

  • Kong XF, Yin YL, He QH et al. (2008) Dietary supplementation with Chinese herbal powder enhances ileal digestibilities and serum concentrations of amino acids in young pigs. Amino Acids. doi: 10.1007/s00726-008-0176-9

  • Krane SM (2008) The importance of proline residues in the structure, stability and susceptibility to proteolytic degradation of collagens. Amino Acids 35:703–710

    Article  CAS  PubMed  Google Scholar 

  • Lefaucheur L, Dividich JL, Mourot J et al (1991) Influence of environmental temperature on growth, muscle and adipose tissue metabolism, and meat quality in swine. J Anim Sci 69:2844–2854

    CAS  PubMed  Google Scholar 

  • Li LL, Hou ZP, Yin YL et al (2007a) Intramuscular administration of zinc metallothionein to preslaughter stress pigs improves anti-oxidative status and pork quality. Asian Aust J Anim Sci 20:761–767

    CAS  Google Scholar 

  • Li P, Yin YL, Li DF et al (2007b) Amino acids and immune function. Br J Nutr 98:237–252

    Article  CAS  PubMed  Google Scholar 

  • Liao XH, Majithia A, Huang XL, Kimmel AR (2008) Growth control via TOR kinase signaling, an intracellular sensor of amino acids and energy availability, with crosstalk potential to proline metabolism. Amino Acids 35:761–770

    Article  CAS  PubMed  Google Scholar 

  • Mateo RD, Wu G, Bazer FW et al (2007) Dietary l-arginine supplementation enhances the reproductive performance of gilts. J Nutr 137:652–656

    CAS  PubMed  Google Scholar 

  • Montanez RC, Rodriguez-Caso C, Sanchez-Jimenez F, Medina MA (2008) In silico analysis of arginine catabolism as a source of nitric oxide or polyamines in endothelial cells. Amino Acids 34:223–229

    Article  CAS  PubMed  Google Scholar 

  • NPPC (1991) Procedures to evaluate market hogs. The 3rd National Pork Producers Council Des Moines, USA

    Google Scholar 

  • Petrovic V, Buzadzic B, Korac A et al (2008) Antioxidative defence alterations in skeletal muscle during prolonged acclimation to cold: role of l-arginine/NO-producing pathway. J Exp Biol 211:114–120

    Article  CAS  PubMed  Google Scholar 

  • Phang JM, Donald SP, Pandhare J, Liu YM (2008) The metabolism of proline, a stress substrate, modulates carcinogenic pathways. Amino Acids 35:681–690

    Article  CAS  PubMed  Google Scholar 

  • Rider JE, Hacker A, Mackintosh CA et al (2007) Spermine and spermidine mediate protection against oxidative damage caused by hydrogen peroxide. Amino Acids 33:231–240

    Article  CAS  PubMed  Google Scholar 

  • Sandercock DA, Hunter RR, Nute GR et al (2001) Acute heat stress-induced alterations in blood acid-base status and skeletal muscle membrane integrity in broiler chickens at two ages: implications for meat quality. Poult Sci 80:418–425

    CAS  PubMed  Google Scholar 

  • Science and Technology Ministry of China (2006) The guiding suggestion about treating experimental animals amicablely. Document no. 398

  • Steinberg GR, Rush JW, Dyck DJ (2003) AMPK expression and phosphorylation are increased in rodent muscle after chronic leptin treatment. Am J Physiol Endocrinol Metab 284:E648–E654

    CAS  PubMed  Google Scholar 

  • Suenaga R, Tomonaga S, Yamane H et al (2008a) Intracerebroventricular injection of L-arginine induces sedative and hypnotic effects under an acute stress in neonatal chicks. Amino Acids 35:139–146

    Article  CAS  PubMed  Google Scholar 

  • Suenaga R, Yamane H, Tomonaga S et al (2008b) Central l-arginine reduced stress responses are mediated by l-ornithine in neonatal chicks. Amino Acids 35:107–113

    Article  CAS  PubMed  Google Scholar 

  • Swigert KS, Mckeith FK, Carr TC et al (2004) Effects of dietary vitamin D3, vitamin E, and magnesium supplementation on pork quality. Meat Sci 67:81–86

    Article  CAS  Google Scholar 

  • Tan BE, Li XG, Kong XF et al. (2008a) Dietary l-arginine supplementation enhances the immune status in early- weaned piglets. Amino Acids. doi:10.1007/s00726-008-0155-1

  • Tan BE, Yin YL, Liu ZQ et al. (2008b) Dietary l-arginine supplementation increases muscle gain and reduces body fat mass in growing-finishing pigs. Amino Acids. doi:10.1007/s00726-008-0148-0

  • Wang WW, Qiao SY, Li DF (2008a) Amino acids and gut function. Amino Acids. doi:10.1007/s00726-008-0152-4

  • Wang JJ, Chen LX, Li P et al (2008b) Gene expression is altered in piglet small intestine by weaning and dietary glutamine supplementation. J Nutr 138:1025–1032

    CAS  PubMed  Google Scholar 

  • Wascher TC, Posch K, Wallner S (1997) Vascular effects of l-arginine: anything beyond a substrate for the NO-synthase? Biochem Biophys Res Commun 234:35–38

    Article  CAS  PubMed  Google Scholar 

  • Wu G (1997) Synthesis of citrulline and arginine from proline in enterocytes of postnatal pigs. Am J Physiol Gastrointest Liver Physiol 272:G1382–G1390

    CAS  Google Scholar 

  • Wu G, Knabe DA (1995) Arginine synthesis in enterocytes of neonatal pigs. Am J Physiol Regulatory Integrative Comp Physiol 269:R621–R629

    CAS  Google Scholar 

  • Wu G, Morris SM (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336:1–17

    CAS  PubMed  Google Scholar 

  • Wu G, Meininger CJ (2008) Nitric oxide and vascular insulin resistance. BioFactors (in press)

  • Wu G, Fang YZ, Yang S et al (2004a) Glutathione metabolism and its implications for health. J Nutr 134:489–492

    CAS  PubMed  Google Scholar 

  • Wu G, Knabe DA, Kim SW (2004b) Arginine nutrition in neonatal pigs. J Nutr 134:2390S–2783S

    Google Scholar 

  • Wu G, Bazer FW, Davis TA et al (2007a) Important roles for the arginine family of amino acids in swine nutrition and production. Livest Sci 112:8–22

    Article  Google Scholar 

  • Wu G, Bazer FW, Cudd TA et al (2007b) Pharmacokinetics and safety of arginine supplementation in animals. J Nutr 137:1673S–1680S

    CAS  PubMed  Google Scholar 

  • Wu G, Collins JK, Perkins-Veazie P et al (2007c) Dietary supplementation with watermelon pomace juice enhances arginine availability and ameliorates the metabolic syndrome in Zucker diabetic fatty rats. J Nutr 137:2680–2685

    CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Datta S et al (2008a) Proline metabolism in the conceptus: Implications for fetal growth and development. Amino Acids 35:691–702

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Davis TA et al. (2008b) Arginine metabolism and nutrition in growth, health and disease. Amino Acids. 10.1007/s00726-008-0210-y

  • Yao K, Yin YL, Chu WY et al (2008) Dietary arginine supplementation increases mTOR signaling activity in skeletal muscle of neonatal pigs. J Nutr 138:867–872

    CAS  PubMed  Google Scholar 

  • Yin FG, Liu YL, Yin YL et al. (2008) Dietary supplementation with Astragalus polysaccharide enhances ileal digestibilities and serum concentrations of amino acids in early weaned piglets. Amino Acids. doi:10.1007/s00726-008-0142-6

Download references

Acknowledgments

This study was supported by a grant (2004CB117500) from the “973” plan of China. We thank the stuff of Institute of Animal Science, Guangdong Academy of Agricultural Science the Guangdong and Public Laboratory of Animal Breeding and Nutrition for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongyong Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, X., Lin, Y., Jiang, Z. et al. Dietary arginine supplementation enhances antioxidative capacity and improves meat quality of finishing pigs. Amino Acids 38, 95–102 (2010). https://doi.org/10.1007/s00726-008-0213-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-008-0213-8

Keywords

Navigation