Skip to main content
Log in

Camphoric acid stimulates osteoblast differentiation and induces glutamate receptor expression

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

We found that camphoric acid significantly stimulated the differentiation of mouse osteoblastic MC3T3-E1 subclone 4 cells, as indicated by the induction of markers of osteoblastic differentiation. To elucidate the mechanism of action of camphoric acid in osteoblast differentiation, we evaluated the induction of transient receptor potential (TRP) cation channel family members and glutamate signaling molecules. TRPM7 and TRPV1 were highly expressed, but their expression was unaffected by camphoric acid. Camphoric acid is structurally similar to glutamate receptor ligands and significantly induced the expression of NMDAR1, GluR3/4, and mGluR8. However, camphoric acid exhibited weak regulatory activity toward glutamate receptors in a radioligand binding assay. Camphoric acid also significantly induced the activation of NF-κB and AP-1. Together, these data suggest that the stimulatory effect of camphoric acid on osteoblast differentiation was the result of its ability to induce mRNA expression of glutamate signaling molecules and to activate transcription factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abed E, Moreau R (2007) Importance of melastatin-like transient receptor potential 7 and cations (magnesium, calcium) in human osteoblast-like cell proliferation. Cell Prolif 40(6):849–865. doi:10.1111/j.1365-2184.2007.00476.x

    Article  CAS  PubMed  Google Scholar 

  • Balcar VJ, Li Y, Killinger S (1995) Effects of l-trans-pyrrolidine-2,4-dicarboxylate and l-threo-3-hydroxyaspartate on the binding of [3H]l-aspartate, [3H]alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA), [3H]d l-(E)-2-amino-4-propyl-5-phosphono-3-pentenoate (CGP 39653), [3H]6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and [3H]kainate studied by autoradiography in rat forebrain. Neurochem Int 26(2):155–164. doi:10.1016/0197-0186(94)00120-J

    Article  CAS  PubMed  Google Scholar 

  • Baldi C, Vazquez G, Calvo JC, Boland R (2003) TRPC3-like protein is involved in the capacitative cation entry induced by 1alpha,25-dihydroxy-vitamin D3 in ROS 17/2.8 osteoblastic cells. J Cell Biochem 90(1):197–205. doi:10.1002/jcb.10612

    Article  CAS  PubMed  Google Scholar 

  • Burkhart CG, Burkhart HR (2003) Contact irritant dermatitis and anti-pruritic agents: the need to address the itch. J Drugs Dermatol 2(2):143–146

    PubMed  Google Scholar 

  • Chenu C (2002) Glutamatergic innervation in bone. Microsc Res Tech 58(2):70–76. doi:10.1002/jemt.10120

    Article  CAS  PubMed  Google Scholar 

  • Flockerzi V (2007) An introduction on TRP channels. Handb Exp Pharmacol 179:1–19. doi:10.1007/978-3-540-34891-7_1

    Article  CAS  PubMed  Google Scholar 

  • Genever PG, Skerry TM (2001) Regulation of spontaneous glutamate release activity in osteoblastic cells and its role in differentiation and survival: evidence for intrinsic glutamatergic signaling in bone. FASEB J 15(9):1586–1588

    CAS  PubMed  Google Scholar 

  • Gu Y, Genever PG, Skerry TM, Publicover SJ (2002) The NMDA type glutamate receptors expressed by primary rat osteoblasts have the same electrophysiological characteristics as neuronal receptors. Calcif Tissue Int 70(3):194–203. doi:10.1007/s00223-001-2004-z

    Article  CAS  PubMed  Google Scholar 

  • Harada S, Rodan GA (2003) Control of osteoblast function and regulation of bone mass. Nature 423(6937):349–355

    Google Scholar 

  • Haxhiu MA, Chavez JC, Pichiule P, Erokwu B, Dreshaj IA (2000) The excitatory amino acid glutamate mediates reflexly increased tracheal blood flow and airway submucosal gland secretion. Brain Res 883(1):77–86. doi:10.1016/S0006-8993(00)02890-0

    Article  CAS  PubMed  Google Scholar 

  • Hindle S, Rarey M, Buning C, Lengauer TJ (2002) Flexible docking under pharmacophore type constraints. Comput Aided Mol Des 77(2):129–149. doi:10.1023/A:1016399411208

    Article  Google Scholar 

  • Hinoi E, Fujimori S, Nakamura Y, Yoneda Y (2001) Group III metabotropic glutamate receptors in rat cultured calvarial osteoblasts. Biochem Biophys Res Commun 281(2):341–346. doi:10.1006/bbrc.2001.4355

    Article  CAS  PubMed  Google Scholar 

  • Hinoi E, Fujimori S, Takemori A, Kurabayashi H, Nakamura Y, Yoneda Y (2002) Demonstration of expression of mRNA for particular AMPA and kainate receptor subunits in immature and mature cultured rat calvarial osteoblasts. Brain Res 943(1):112–116. doi:10.1016/S0006-8993(02)02726-9

    Article  CAS  PubMed  Google Scholar 

  • Hinoi E, Fujimori S, Yoneda Y (2003) Modulation of cellular differentiation by N-methyl-d-aspartate receptors in osteoblasts. FASEB J 17(11):1532–1534

    CAS  PubMed  Google Scholar 

  • Hoenderop JG, van Leeuwen JP, van der Eerden BC, Kersten FF, van der Kemp AW, Mérillat AM, Waarsing JH, Rossier BC, Vallon V, Hummler E, Bindels RJ (2003) Renal Ca2+ wasting, hyperabsorption, and reduced bone thickness in mice lacking TRPV5. J Clin Invest 112(12):1906–1914

    CAS  PubMed  Google Scholar 

  • Ho ML, Tsai TN, Chang JK, Shao TS, Jeng YR, Hsu C (2005) Down-regulation of N-methyl d-aspartate receptor in rat-modeled disuse osteopenia. Osteoporos Int 16(12):1780–1788. doi:10.1007/s00198-005-1928-y

    Article  CAS  PubMed  Google Scholar 

  • Jeong JG, Kim YS, Min YK, Kim SH (2008) Low concentration of 3-carene stimulates the differentiation of mouse osteoblastic MC3T3–E1 subclone 4 cells. Phytother Res 22(1):18–22. doi:10.1002/ptr.2247

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Lee MH, Kim HJ, Shin HI, Choi JY, Ryoo HM (2002) Okadaic acid stimulates osteopontin expression through de novo induction of AP-1. J Cell Biochem 87(1):93–102. doi:10.1002/jcb.10280

    Article  CAS  PubMed  Google Scholar 

  • Kovacs AD, Cebers G, Liljequist S (1999) Prolonged enhancement of AP-1 DNA binding by blockade of glutamate uptake in cultured neurons. Neuroreport 10(9):1805–1809

    Article  CAS  PubMed  Google Scholar 

  • Labelle D, Jumarie C, Moreau R (2007) Capacitative calcium entry and proliferation of human osteoblast-like MG-63 cells. Cell Prolif 40(6):866–884. doi:10.1111/j.1365-2184.2007.00477.x

    Article  CAS  PubMed  Google Scholar 

  • Laketić-Ljubojević I, Suva LJ, Maathuis FJ, Sanders D, Skerry TM (1999) Functional characterization of N-methyl-d-aspartic acid-gated channels in bone cells. Bone 25(6):631–637. doi:10.1016/S8756-3282(99)00224-0

    Article  PubMed  Google Scholar 

  • Lee MK, Yang H, Ma CJ, Kim YC (2007) Stimulatory activity of lignans from Machilus thunbergii on osteoblast differentiation. Biol Pharm Bull 30(4):814–817. doi:10.1248/bpb.30.814

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Mason DJ (2004) Glutamate signalling and its potential application to tissue engineering of bone. Eur Cell Mater 7:12–25

    CAS  PubMed  Google Scholar 

  • Mason DJ, Suva LJ, Genever PG, Patton AJ, Steuckle S, Hillam RA, Skerry TM (1997) Mechanically regulated expression of a neural glutamate transporter in bone: a role for excitatory amino acids as osteotropic agents? Bone 20(3):199–205. doi:10.1016/S8756-3282(96)00386-9

    Article  CAS  PubMed  Google Scholar 

  • Moqrich A, Hwang SW, Earley TJ, Petrus MJ, Murray AN, Spencer KS, Andahazy M, Story GM, Patapoutian A (2005) Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science 307(5714):1468–1472. doi:10.1126/science.1108609

    Article  CAS  PubMed  Google Scholar 

  • Narayanan K, Srinivas R, Peterson MC, Ramachandran A, Hao J, Thimmapaya B, Scherer PE, George A (2004) Transcriptional regulation of dentin matrix protein 1 by JunB and p300 during osteoblast differentiation. J Biol Chem 279(43):44294–44302. doi:10.1074/jbc.M403511200

    Article  CAS  PubMed  Google Scholar 

  • Patton AJ, Genever PG, Birch MA, Suva LJ, Skerry TM (1998) Expression of an N-methyl-d-aspartate-type receptor by human and rat osteoblasts and osteoclasts suggests a novel glutamate signaling pathway in bone. Bone 22(6):645–649. doi:10.1016/S8756-3282(98)00061-1

    Article  CAS  PubMed  Google Scholar 

  • Putnam SE, Scutt AM, Bicknell K, Priestley CM, Williamson EM (2007) Natural products as alternative treatments for metabolic bone disorders and for maintenance of bone health. Phytother Res 21(2):99–112

    Article  PubMed  Google Scholar 

  • Qiang M, Ticku MK (2005) Role of AP-1 in ethanol-induced N-methyl-d-aspartate receptor 2B subunit gene up-regulation in mouse cortical neurons. J Neurochem 95(5):1332–1341. doi:10.1111/j.1471-4159.2005.03464.x

    Article  CAS  PubMed  Google Scholar 

  • Ramírez-Sotelo G, López-Bayghen E, Hernández-Kelly LC, Arias-Montaño JA, Bernabé A, Ortega A (2007) Regulation of the mouse Na+-dependent glutamate/aspartate transporter GLAST: putative role of an AP-1 DNA binding site. Neurochem Res 32(1):73–80. doi:10.1007/s11064-006-9227-3

    Article  PubMed  CAS  Google Scholar 

  • Renault MA, Jalvy S, Potier M, Belloc I, Genot E, Dekker LV, Desgranges C, Gadeau AP (2005) UTP induces osteopontin expression through a coordinate action of NFkappaB, activator protein-1, and upstream stimulatory factor in arterial smooth muscle cells. J Biol Chem 280(4):2708–2713. doi:10.1074/jbc.M411786200

    Article  CAS  PubMed  Google Scholar 

  • Rodan GA, Martin TJ (2000) Therapeutic approaches to bone diseases. Science 289(5484):1508–1514

    Article  CAS  PubMed  Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386

    Google Scholar 

  • Sakata R, Minami S, Sowa Y, Yoshida M, Tamaki T (2004) Trichostatin A activates the osteopontin gene promoter through AP1 site. Biochem Biophys Res Commun 315(4):959–963. doi:10.1016/j.bbrc.2004.01.152

    Article  CAS  PubMed  Google Scholar 

  • Stein GS, Lian JB, Stein JL, van Wijnen AJ, Montecino M (1996) Transcriptional control of osteoblast growth and differentiation. Physiol Rev 76(2):593–629

    CAS  PubMed  Google Scholar 

  • van der Klift, de Laet CD, Pols HA (2005) Assessment of fracture risk: who should be treated for osteoporosis? Best Pract Res Clin Rheumatol 19(6):937–950. doi:10.1016/j.berh.2005.06.001

  • Wang D, Christensen K, Chawla K, Xiao G, Krebsbach PH, Franceschi RT (1999) Isolation and characterization of MC3T3-E1 preosteoblast subclones with distinct in vitro and in vivo differntiation/mineralization potential. J Bone Miner Res 14(6):893–903

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Blair NT, Clapham DE (2005) Camphor activates and strongly desensitizes the transient receptor potential vanilloid subtype 1 channel in a vanilloid-independent mechanism. J Neurosci 25(39):8924–8937. doi:10.1523/JNEUROSCI.2574-05.2005

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grant (No. M108KH010012-08K0801-01220) from the Center for Biological Modulators of the twenty-first Century Frontier R&D Program, the Ministry of Science and Technology, Korea. We thank S. Y. Ryu and Y. S. Kim of the Laboratory of Phytochemistry Research, Korea Research Institute of Chemical Technology, for providing natural compounds for the preliminary study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong Hwan Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, SU., Kang, N.S., Min, Y.K. et al. Camphoric acid stimulates osteoblast differentiation and induces glutamate receptor expression. Amino Acids 38, 85–93 (2010). https://doi.org/10.1007/s00726-008-0208-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-008-0208-5

Keywords

Navigation