Skip to main content
Log in

Cysteine dioxygenase: a robust system for regulation of cellular cysteine levels

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Cysteine catabolism in mammals is dependent upon cysteine dioxygenase (CDO), an enzyme that adds molecular oxygen to the sulfur of cysteine, converting the thiol to a sulfinic acid known as cysteinesulfinic acid (3-sulfinoalanine). CDO is one of the most highly regulated metabolic enzymes responding to diet that is known. It undergoes up to 45-fold changes in concentration and up to 10-fold changes in catalytic efficiency. This provides a remarkable responsiveness of the cell to changes in sulfur amino acid availability: the ability to decrease CDO activity and conserve cysteine when cysteine is scarce and to rapidly increase CDO activity and catabolize cysteine to prevent cytotoxicity when cysteine supply is abundant. CDO in both liver and adipose tissues responds to changes in dietary intakes of protein and/or sulfur amino acids over a range that encompasses the requirement level, suggesting that cysteine homeostasis is very important to the living organism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CDO:

Cysteine dioxygenase

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

References

  • Bella DL, Hahn C, Stipanuk MH (1999a) Effects of non-sulfur and sulfur amino acids on the regulation of hepatic enzymes of cysteine metabolism. Am J Physiol 277:E144–E153

    PubMed  CAS  Google Scholar 

  • Bella DL, Hirschberger LL, Hosokawa Y, Stipanuk MH (1999b) Mechanisms involved in the regulation of key enzymes of cysteine metabolism in rat liver in vivo. Am J Physiol 276:E326–E335

    PubMed  CAS  Google Scholar 

  • Bradley H, Gough A, Sokhi RS, Hassell A, Waring R, Emery P (1994) Sulfate metabolism is abnormal in patients with rheumatoid arthritis. Confirmation by in vivo biochemical findings. J Rheumatol 21:1192–1196

    PubMed  CAS  Google Scholar 

  • Cresenzi CL, Lee JI, Stipanuk MH (2003) Cysteine is the metabolic signal responsible for dietary regulation of hepatic cysteine dioxygenase and glutamate cysteine ligase in intact rats. J Nutr 133:2697–2702

    PubMed  CAS  Google Scholar 

  • Davies MH, Ngong JM, Pean A, Vickers CR, Waring RH, Elias E (1995) Sulphoxidation and sulphation capacity in patients with primary biliary cirrhosis. J Hepatol 22:551–560

    Article  PubMed  CAS  Google Scholar 

  • Dominy JE, Stipanuk MH (2004) New roles for cysteine and transsulfuration enzymes: production of H2S, a neuromodulator and smooth muscle relaxant. Nutr Rev 62:348–353

    PubMed  Google Scholar 

  • Dominy JE Jr, Hirschberger LL, Coloso RM, Stipanuk MH (2006a) In vivo regulation of cysteine dioxygenase via the ubiquitin-26S proteasome system. Adv Exp Med Biol 583:37–47

    Article  PubMed  CAS  Google Scholar 

  • Dominy JE Jr, Hirschberger LL, Coloso RM, Stipanuk MH (2006b) Regulation of cysteine dioxygenase degradation is mediated by intracellular cysteine levels and the ubiquitin-26S proteasome system in the living rat. Biochem J 394(Pt 1):267–273

    PubMed  CAS  Google Scholar 

  • Dominy JE Jr, Hwang J, Stipanuk MH (2007) Overexpression of cysteine dioxygenase reduces intracellular cysteine and glutathione pools in HepG2/C3A cells. Am J Physiol Endocrinol Metab 293:E62–E69

    Article  PubMed  CAS  Google Scholar 

  • Dominy JE Jr, Hwang J, Guo S, Hirschberger LL, Zhang S, Stipanuk MH (2008) Synthesis of amino acid cofactor in cysteine dioxygenase is regulated by substrate and represents a novel post-translational regulation of activity. J Biol Chem 283:12188–12201

    Article  PubMed  CAS  Google Scholar 

  • Emery P, Salmon M, Bradley H, Wordsworth P, Tunn E, Bacon PA, Waring R (1992) Genetically determined factors as predictors of radiological change in patients with early symmetrical arthritis. Bmj 305(6866):1387–1389

    Article  PubMed  CAS  Google Scholar 

  • Fontana M, Amendola D, Orsini E, Boffi A, Pecci L (2005) Oxidation of hypotaurine and cysteine sulphinic acid by peroxynitrite. Biochem J 389:233–240

    Article  PubMed  CAS  Google Scholar 

  • Green TR, Fellman JH, Eicher AL, Pratt KL (1991) Antioxidant role and subcellular location of hypotaurine and taurine in human neutrophils. Biochim Biophys Acta 1073:91–97

    PubMed  CAS  Google Scholar 

  • Heafield MT, Fearn S, Steventon GB, Waring RH, Williams AC, Sturman SG (1990) Plasma cysteine and sulphate levels in patients with motor neurone, Parkinson’s and Alzheimer’s disease. Neurosci Lett 110:216–220

    Article  PubMed  CAS  Google Scholar 

  • Hirschberger LL, Daval S, Stover PJ, Stipanuk MH (2001) Murine cysteine dioxygenase gene: structural organization, tissue-specific expression and promoter identification. Gene 277:153–161

    Article  PubMed  CAS  Google Scholar 

  • Ide T, Kushiro M, Takahashi Y, Shinohara K, Cha S (2002) mRNA expression of enzymes involved in taurine biosynthesis in rat adipose tissues. Metabolism 51:1191–1197

    Article  PubMed  CAS  Google Scholar 

  • Kwon YH, Stipanuk MH (2001) Cysteine regulates expression of cysteine dioxygenase and gamma-glutamylcysteine synthetase in cultured rat hepatocytes. Am J Physiol Endocrinol Metab 280(5):E804–E815

    PubMed  CAS  Google Scholar 

  • Lee JI, Londono M, Hirschberger LL, Stipanuk MH (2004) Regulation of cysteine dioxygenase and gamma-glutamylcysteine synthetase is associated with hepatic cysteine level. J Nutr Biochem 15:112–122

    Article  PubMed  CAS  Google Scholar 

  • Millard J, Parsons RB, Waring RH, Williams AC, Ramsden DB (2003) Expression of cysteine dioxygenase (EC 1.13.11.20) and sulfite oxidase in the human lung: a potential role for sulfate production in the protection from airborne xenobiotica. Mol Pathol 56:270–274

    Article  PubMed  CAS  Google Scholar 

  • Parsons RB, Sampson D, Huggins CC, Waring RH, Williams AC, Ramsden DB (2001a) Renal localisation of rat cysteine dioxygenase. Nephron 88:340–346

    Article  PubMed  CAS  Google Scholar 

  • Parsons RB, Waring RH, Williams AC, Ramsden DB (2001b) Cysteine dioxygenase: regional localisation of protein and mRNA in rat brain. J Neurosci Res 65:78–84

    Article  PubMed  CAS  Google Scholar 

  • Shimada M, Koide T, Kuroda E, Tsuboyama N, Hosokawa Y, Watanabe M (1998) Expression and localization of cysteine dioxygenase mRNA in the liver, lung, and kidney of the rat. Amino Acids 15:143–150

    Article  PubMed  CAS  Google Scholar 

  • Simmons CR, Hirschberger LL, Machi MS, Stipanuk MH (2006a) Expression, purification, and kinetic characterization of recombinant rat cysteine dioxygenase, a non-heme metalloenzyme necessary for regulation of cellular cysteine levels. Protein Expr Purif 47:74–81

    Article  PubMed  CAS  Google Scholar 

  • Simmons CR, Liu Q, Huang Q, Hao Q, Begley TP, Karplus PA, Stipanuk MH (2006b) Crystal structure of mammalian cysteine dioxygenase, a novel mononuclear iron center for cysteine thiol oxidation. J Biol Chem 281:18723–18733

    Article  PubMed  CAS  Google Scholar 

  • Stipanuk MH (1986) Metabolism of sulfur-containing amino acids. Annu Rev Nutr 6:179–209

    Article  PubMed  CAS  Google Scholar 

  • Stipanuk MH (2004a) Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine. Annu Rev Nutr 24:539–577

    Article  PubMed  CAS  Google Scholar 

  • Stipanuk MH (2004b) Role of the liver in regulation of body cysteine and taurine levels: a brief review. Neurochem Res 29:105–110

    Article  PubMed  CAS  Google Scholar 

  • Stipanuk MH, Dominy JE Jr (2006) Surprising insights that aren’t so surprising in the modeling of sulfur amino acid metabolism. Amino Acids 30:251–256

    Article  PubMed  CAS  Google Scholar 

  • Stipanuk MH, Londono M, Lee JI, Hu M, Yu AF (2002) Enzymes and metabolites of cysteine metabolism in non-hepatic tissues of rats show little response to changes in dietary protein or sulfur amino acid levels. J Nutr 132:3369–3378

    PubMed  CAS  Google Scholar 

  • Stipanuk MH, Hirschberger LL, Londono MP, Cresenzi CL, Yu AF (2004a) The ubiquitin-proteasome system is responsible for cysteine-responsive regulation of cysteine dioxygenase concentration in liver. Am J Physiol Endocrinol Metab 286:E439–E448

    Article  PubMed  CAS  Google Scholar 

  • Stipanuk MH, Londono M, Hirschberger LL, Hickey C, Thiel DJ, Wang L (2004b) Evidence for expression of a single distinct form of mammalian cysteine dioxygenase. Amino Acids 26:99–106

    Article  PubMed  CAS  Google Scholar 

  • Stipanuk MH, Dominy JE Jr, Lee JI, Coloso RM (2006) Mammalian cysteine metabolism: new insights into regulation of cysteine metabolism. J Nutr 136:1652S–1659S

    PubMed  CAS  Google Scholar 

  • Ueki I, Stipanuk MH (2007) Enzymes of the taurine biosynthetic pathway are expressed in rat mammary gland. J Nutr 137:1887–1894

    PubMed  CAS  Google Scholar 

  • Whittaker MM, Whittaker JW (2003) Cu(I)-dependent biogenesis of the galactose oxidase redox cofactor. J Biol Chem 278:22090–22101

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institute of Diabetes and Digestive and Kidney Diseases through Public Health Service Grant # DK056649 (to MHS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Stipanuk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stipanuk, M.H., Ueki, I., Dominy, J.E. et al. Cysteine dioxygenase: a robust system for regulation of cellular cysteine levels. Amino Acids 37, 55–63 (2009). https://doi.org/10.1007/s00726-008-0202-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-008-0202-y

Keywords

Navigation