Skip to main content

Advertisement

Log in

Prediction of protein structural classes by Chou’s pseudo amino acid composition: approached using continuous wavelet transform and principal component analysis

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

A prior knowledge of protein structural classes can provide useful information about its overall structure, so it is very important for quick and accurate determination of protein structural class with computation method in protein science. One of the key for computation method is accurate protein sample representation. Here, based on the concept of Chou’s pseudo-amino acid composition (AAC, Chou, Proteins: structure, function, and genetics, 43:246–255, 2001), a novel method of feature extraction that combined continuous wavelet transform (CWT) with principal component analysis (PCA) was introduced for the prediction of protein structural classes. Firstly, the digital signal was obtained by mapping each amino acid according to various physicochemical properties. Secondly, CWT was utilized to extract new feature vector based on wavelet power spectrum (WPS), which contains more abundant information of sequence order in frequency domain and time domain, and PCA was then used to reorganize the feature vector to decrease information redundancy and computational complexity. Finally, a pseudo-amino acid composition feature vector was further formed to represent primary sequence by coupling AAC vector with a set of new feature vector of WPS in an orthogonal space by PCA. As a showcase, the rigorous jackknife cross-validation test was performed on the working datasets. The results indicated that prediction quality has been improved, and the current approach of protein representation may serve as a useful complementary vehicle in classifying other attributes of proteins, such as enzyme family class, subcellular localization, membrane protein types and protein secondary structure, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aguero-Chapin G, Gonzalez-Diaz H, Molina R, Varona-Santos J, Uriarte E, Gonzalez-Diaz Y (2006) Novel 2D maps and coupling numbers for protein sequences. The first QSAR study of polygalacturonases; isolation and prediction of a novel sequence from Psidium guajava L. FEBS Lett 580:723–730

    PubMed  Google Scholar 

  • Bahar I, Atilgan AR, Jernigan RL, Erman B (1997) Understanding the recognition of protein structural classes by amino acid composition. Proteins 29:172–185

    PubMed  CAS  Google Scholar 

  • Caballero J, Fernandez L, Garriga M, Abreu JI, Collina S, Fernandez M (2007) Proteometric study of ghrelin receptor function variations upon mutations using amino acid sequence autocorrelation vectors and genetic algorithm-based least square support vector machines. J Mol Graph Model 26:166–178

    PubMed  CAS  Google Scholar 

  • Cai YD, Chou KC (2003) Nearest neighbour algorithm for predicting protein subcellular location by combining functional domain composition and pseudo-amino acid composition. Biochem Biophys Res Comm 305:407–411

    PubMed  CAS  Google Scholar 

  • Cai YD, Chou KC (2005) Predicting enzyme subclass by function domain composition and pseudo amino acid composition. J Proteome Res 4:967–971

    PubMed  CAS  Google Scholar 

  • Cai YD, Chou KC (2006) Predicting membrane protein type by function domain composition and pseudo amino acid composition. J Theor Biol 238:395–400

    PubMed  CAS  Google Scholar 

  • Cai YD, Liu XJ, Xu XB, Zhou GP (2001) Support vector machines for predicting protein structural class. BMC Bioinform 2:3

    CAS  Google Scholar 

  • Cai YD, Zhou GP, Chou KC (2005) Predicting enzyme family classes by hybridizing gene product composition and pseudo-amino acid composition. J Theor Biol 234:145–149

    PubMed  CAS  Google Scholar 

  • Cai YD, Zhou GP (2000) Prediction of protein structural classes by neural network. Biochimie 82:783–785

    PubMed  CAS  Google Scholar 

  • Cao YF, Liu S, Zhang L, Qin J, Wang J, Tang KX (2006) Prediction of protein structural class with rough sets. BMC Bioinform 7:20

    Google Scholar 

  • Chang CC, Lin CJ (2001) LIBSVM: a library for support vector machines. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

  • Chen C, Tian YX, Zou XY, Cai PX, Mo JY (2006a) Using pseudo-amino acid composition and support vector machine to predict protein structural class. J Theor Biol 243:444–448

    PubMed  CAS  Google Scholar 

  • Chen C, Zhou XB, Tian YX, Zou XY, Cai PX (2006b) Predicting protein structural class with pseudo-amino acid composition and support vector machine fusion network. Anal Biochem 357:116–121

    PubMed  CAS  Google Scholar 

  • Chen YL, Li QZ (2007a) Prediction of apoptosis protein subcellular location using improved hybrid approach and pseudo amino acid composition. J Theor Biol 248:377–381

    PubMed  CAS  Google Scholar 

  • Chen YL, Li QZ (2007b) Prediction of the subcellular location of apoptosis proteins. J Theor Biol 245:775–783

    PubMed  CAS  Google Scholar 

  • Chou KC (1992) Energy-optimized structure of antifreeze protein and its binding mechanism. J Mol Biol 223:509–517

    PubMed  CAS  Google Scholar 

  • Chou KC (1995) A novel approach to predicting protein structural classes in a (20–1)-d amino acid composition space. Proteins 21:319–344

    PubMed  CAS  Google Scholar 

  • Chou KC (1999a) A key driving force in determination of protein structural classes. Biochem Biophys Res Commun 264:216–224

    PubMed  CAS  Google Scholar 

  • Chou KC (1999b) Using pair-coupled amino acid composition to predict protein secondary structure content. J Protein Chem 18:473–480

    PubMed  CAS  Google Scholar 

  • Chou KC (2000) Review: Prediction of protein structural classes and subcellular locations. Curr Protein Pept Sc 1:171–208

    CAS  Google Scholar 

  • Chou KC (2001) Prediction of protein cellular attributes using pseudo-amino acid composition. Proteins (Erratum: ibid., 2001, Vol. 44, 60) 43:246–255

    CAS  Google Scholar 

  • Chou KC (2005a) Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes. Bioinformatics 21:10–19

    PubMed  CAS  Google Scholar 

  • Chou KC (2005b) Review: Progress in protein structural class prediction and its impact to bioinformatics and proteomics. Curr Protein Pept Sci 6:423–436

    PubMed  CAS  Google Scholar 

  • Chou KC, Cai YD (2004a) Predicting protein structural class by functional domain composition. Biochem Biophys Res Commun (Corrigendum: ibid., 2005, Vol. 329, 1362) 321:1007–1009

    CAS  Google Scholar 

  • Chou KC, Cai YD (2004b) Predicting subcellular localization of proteins by hybridizing functional domain composition and pseudo-amino acid composition. J Cell Biochem 91:1197–1203

    PubMed  CAS  Google Scholar 

  • Chou KC, Shen HB (2006a) Hum-PLoc: A novel ensemble classifier for predicting human protein subcellular localization. Biochem Biophys Res Commun 347:150–157

    PubMed  CAS  Google Scholar 

  • Chou KC, Shen HB (2006b) Predicting eukaryotic protein subcellular location by fusing optimized evidence-theoretic K-nearest neighbor classifiers. J Proteome Res 5:1888–1897

    PubMed  CAS  Google Scholar 

  • Chou KC, Shen HB (2006c) Predicting protein subcellular location by fusing multiple classifiers. J Cell Biochem 99:517–527

    PubMed  CAS  Google Scholar 

  • Chou KC, Shen HB (2007a) Euk-mPLoc: a fusion classifier for large-scale eukaryotic protein subcellular location prediction by incorporating multiple sites. J Proteome Res 6:1728–1734

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Shen HB (2007b) MemType-2L: A Web server for predicting membrane proteins and their types by incorporating evolution information through Pse-PSSM. Biochem Biophys Res Comm 360:339–345

    PubMed  CAS  Google Scholar 

  • Chou KC, Shen HB (2007c) Review: Recent progresses in protein subcellular location prediction. Anal Biochem 370:1–16

    PubMed  CAS  Google Scholar 

  • Chou KC, Shen HB (2007d) Signal-CF: a subsite-coupled and window-fusing approach for predicting signal peptides. Biochem Biophys Res Comm 357:633–640

    PubMed  CAS  Google Scholar 

  • Chou KC, Shen HB (2008) Cell-PLoc: A package of web-servers for predicting subcellular localization of proteins in various organisms. Nat Protocols 3:153–162

    CAS  Google Scholar 

  • Chou KC, Zhang CT (1994) Predicting protein folding types by distance functions that make allowances for amino acid interactions. J Biol Chem 269:22014–22020

    PubMed  CAS  Google Scholar 

  • Chou KC, Zhang CT (1995) Review: Prediction of protein structural classes. Crit Rev Biochem Mol Biol 30:275–349

    PubMed  CAS  Google Scholar 

  • Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273–297

    Google Scholar 

  • Deleage G, Roux B (1987) An algorithm for protein secondary structure prediction based on class prediction. Protien Eng 1:289–294

    CAS  Google Scholar 

  • Diao Y, Li M, Feng Z, Yin J, Pan Y (2007) The community structure of human cellular signaling network. J Theor Biol 247:608–615

    PubMed  Google Scholar 

  • Ding YS, Zhang TL, Chou KC (2007) Prediction of protein structure classes with pseudo amino acid composition and fuzzy support vector machine network. Protein Peptide Lett 14:811–815

    CAS  Google Scholar 

  • Du P, Li Y (2006a) Prediction of protein submitochondria locations by hybridizing pseudo-amino acid composition with various physicochemical features of segmented sequence. BMC Bioinform 7:518

    Google Scholar 

  • Du QS, Jiang ZQ, He WZ, Li DP, Chou KC (2006) Amino acid principal component analysis (AAPCA) and its applications in protein structural class prediction. J Biomol Struct Dyn 23:635–640

    PubMed  CAS  Google Scholar 

  • Du QS, Wei DQ, Chou KC (2003) Correlation of amino acids in proteins. Peptides 24:1863–1869

    PubMed  CAS  Google Scholar 

  • Du PF, Li YD (2006b) Prediction of protein submitochondria locations by hybridizing pseudo-amino acid composition with various physicochemical features of segmented sequence. BMC Bioinform 7:518

    Google Scholar 

  • Fang Y, Guo Y, Feng Y, Li M (2008) Predicting DNA-binding proteins: approached from Chou’s pseudo amino acid composition and other specific sequence features. Amino Acids 34:103–109

    PubMed  CAS  Google Scholar 

  • Feng KY, Cai YD, Chou KC (2005) Boosting classifier for predicting protein domain structural class. Biochem Biophys Res Commun 334:213–217

    PubMed  CAS  Google Scholar 

  • Feng ZP, Zhang CT (2000) Prediction of membrane protein types based on the hydrophobic index of amino acids. J Protein Chem 19:269–275

    PubMed  CAS  Google Scholar 

  • Gao QB, Wang ZZ, Yan C, Du YH (2005a) Prediction of protein subcellular location using a combined feature of sequence. FEBS Lett 579:3444–3448

    PubMed  CAS  Google Scholar 

  • Gao Y, Shao SH, Xiao X, Ding YS, Huang YS, Huang ZD, Chou KC (2005b) Using pseudo amino acid composition to predict protein subcellular location: approached with Lyapunov index, Bessel function, and Chebyshev filter. Amino Acids 28:373–376

    PubMed  CAS  Google Scholar 

  • Gonzalez-Diaz H, Aguero-Chapin G, Varona J, Molina R, Delogu G, Santana L, Uriarte E, Podda G (2007a) 2D-RNA-coupling numbers: a new computational chemistry approach to link secondary structure topology with biological function. J Comput Chem 28:1049–1056

    PubMed  CAS  Google Scholar 

  • Gonzalez-Diaz H, Perez-Bello A, Uriarte E, Gonzalez-Diaz Y (2006) QSAR study for mycobacterial promoters with low sequence homology. Bioorg Med Chem Lett 16:547–553

    PubMed  CAS  Google Scholar 

  • Gonzalez-Diaz H, Perez-Castillo Y, Podda G, Uriarte E (2007b) Computational chemistry comparison of stable/nonstable protein mutants classification models based on 3D and topological indices. J Comput Chem 28:1990–1995

    PubMed  CAS  Google Scholar 

  • Gonzalez-Diaz H, Vilar S, Santana L, Uriarte E (2007c) Medicinal chemistry and bioinformatics - current trends in drugs discovery with networks topological indices. Curr Top Med Chem 10:1015–1029

    Google Scholar 

  • Horne DS (1988) Prediction of protein helix content from an autocorrelation analysis of sequence hydrophobicities. Biopolymers 27:451–477

    PubMed  CAS  Google Scholar 

  • Jahandideh S, Abdolmaleki P, Jahandideh M, Asadabadi EB (2007a) Novel two-stage hybrid neural discriminant model for predicting proteins structural classes. Biophys Chem 128:87–93

    PubMed  CAS  Google Scholar 

  • Jahandideh S, Abdolmaleki P, Jahandideh M, Hayatshahi SHS (2007b) Novel hybrid method for the evaluation of parameters contributing in determination of protein structural classes. J Theor Biol 244:275–281

    PubMed  CAS  Google Scholar 

  • Jiang X, Wei R, Zhang TL, Gu Q (2008) Using the concept of Chou’s pseudo amino acid composition to predict apoptosis proteins subcellular location: an approach by approximate entropy. Protein Peptide Lett 15:392–396

    CAS  Google Scholar 

  • Jin Y, Niu B, Feng KY, Lu WC, Cai YD, Li GZ (2008) Predicting subcellular localization with AdaBoost learner. Protein Peptide Lett 15:286–289

    CAS  Google Scholar 

  • Jolliffe IT (1986) Principal component analysis. Springer-Verlag, New York

    Google Scholar 

  • Kawashima S, Ogata H, Kanehisa M (2000) AAindex: amino acid index database. Nucleic Acids Res 28:374

    PubMed  CAS  Google Scholar 

  • Kedarisetti KD, Kurgan L, Dick S (2006) Classifier ensembles for protein structural class prediction with varying homology. Biochem Biophys Res Commun 348:981–988

    PubMed  CAS  Google Scholar 

  • Kurgan L, Chen K (2007) Prediction of protein structural class for the twilight zone sequences. Biochem Biophys Res Commun 357:453–460

    PubMed  CAS  Google Scholar 

  • Kurgan L, Homaeian L (2006) Prediction of structural classes for protein sequences and domains-impact of prediction algorithms, sequence representation and homology, and test procedures on accuracy. Pattern Recogn 39:2323–2343

    Google Scholar 

  • Kurgan L, Stach W, Ruan J (2007) Novel scales based on hydrophobicity indices for secondary protein structure. J Theor Biol 248:354–366

    PubMed  CAS  Google Scholar 

  • Levitt M, Chothia C (1976) Structural patterns in globular proteins. Nature 261:552–558

    PubMed  CAS  Google Scholar 

  • Li FM, Li QZ (2008) Predicting protein subcellular location using Chou’s pseudo amino acid composition and improved hybrid approach. Protein Peptide Lett 15:612–616

    Google Scholar 

  • Lin H (2008) The modified Mahalanobis discriminant for predicting outer membrane proteins by using Chou’s pseudo amino acid composition. J Theor Biol 252:350–356

    PubMed  CAS  Google Scholar 

  • Lin H, Ding H, Feng B, Guo FB, Zhang AY, Huang J (2008) Predicting subcellular localization of mycobacterial proteins by using chou’s pseudo amino acid composition. Protein Peptide Lett 15:739–744

    CAS  Google Scholar 

  • Lin H, Li QZ (2007a) Predicting conotoxin superfamily and family by using pseudo amino acid composition and modified Mahalanobis discriminant. Biochem Biophys Res Commun 354:548–551

    PubMed  CAS  Google Scholar 

  • Lin H, Li QZ (2007b) Using pseudo amino acid composition to predict protein structural class: approached by incorporating 400 dipeptide components. J Comput Chem 28:1463–1466

    PubMed  CAS  Google Scholar 

  • Lin Z, Pan XM (2001) Accurate prediction of protein secondary structural content. J Protein Chem 20:217–220

    PubMed  Google Scholar 

  • Lio P, Vannucci M (2000) Wavelet change-point prediction of transmembrane proteins. Bioinformatics 16:376–382

    PubMed  CAS  Google Scholar 

  • Liu H, Wang M, Chou KC (2005a) Low-frequency Fourier spectrum for predicting membrane protein types. Biochem Biophys Res Commun 336:737–739

    PubMed  CAS  Google Scholar 

  • Liu H, Yang J, Wang M, Xue L, Chou KC (2005b) Using Fourier spectrum analysis and pseudo amino acid composition for prediction of membrane protein types. Protein J 24:385–389

    PubMed  CAS  Google Scholar 

  • Luo RY, Feng ZP, Liu JK (2002) Predicton of protein structural class by amino acid and polypeptide composition. Eur J Biochem 269:4219–4225

    PubMed  CAS  Google Scholar 

  • Matthews BW (1975) Comparison of predicted and observed secondary structure of T4 phage Iysozyme. Biochim Biophys Acta 405:442–451

    PubMed  CAS  Google Scholar 

  • Mazzatorta P, Cronin MTD, Benfenati E (2006) A QSAR study of avian oral toxicity using support vector machines and genetic algorithms. QSAR Comb Sci 7:616–628

    Google Scholar 

  • Mondal S, Bhavna R, Mohan Babu R, Ramakumar S (2006) Pseudo amino acid composition and multi-class support vector machines approach for conotoxin superfamily classification. J Theor Biol 243:252–260

    PubMed  CAS  Google Scholar 

  • Mundra P, Kumar M, Kumar KK, Jayaraman VK, Kulkarni BD (2007) Using pseudo amino acid composition to predict protein subnuclear localization: approached with PSSM. Pattern Recogn Lett 28:1610–1615

    Google Scholar 

  • Muska SM, Kim SH (1992) Predicting protein secondary structure content―a tandem neural network approach. J Mol Biol 255:713–727

    Google Scholar 

  • Nanni L, Lumini A (2008) Genetic programming for creating Chou’s pseudo amino acid based features for submitochondria localization. Amino Acids 34:653–660

    PubMed  CAS  Google Scholar 

  • Niu B, Cai YD, Lu WC, Zheng GY, Chou KC (2006) Predicting protein structural class with AdaBoost learner. Protein Peptide Lett 13:489–492

    CAS  Google Scholar 

  • Niu B, Jin YH, Feng KY, Liu L, Lu WC, Cai YD, Li GZ (2008) Predicting membrane protein types with bagging learner. Protein Peptide Lett 15:590–594

    CAS  Google Scholar 

  • Pan YX, Zhang ZZ, Guo ZM, Feng GY, Huang ZD, He L (2003) Application of pseudo amino acid composition for predicting protein subcellular location: stochastic signal processing approach. J Protein Chem 22:395–402

    PubMed  CAS  Google Scholar 

  • Pu X, Guo J, Leung H, Lin Y (2007) Prediction of membrane protein types from sequences and position-specific scoring matrices. J Theor Biol 247:259–265

    PubMed  CAS  Google Scholar 

  • Polat K, Güneş S (2008a) Principles components analysis, fuzzy weighting pre-processing and artificial immune recognition system based diagnostic system for diagnosis of lung cancer. Expert Syst Appl 34:214–221

    Google Scholar 

  • Polat K, Güneş S (2008b) Computer aided medical diagnosis system based on principal component analysis and artificial immune recognition system classifier algorithm. Expert Syst Appl 34:773–779

    Google Scholar 

  • Prabakaran S, Sahu R, Verma S (2007) Classification of multi class dataset using wavelet power spectrum. Data Min Knowl Disc 15:297–319

    Google Scholar 

  • Shen HB, Chou KC (2005a) Predicting protein subnuclear location with optimized evidence-theoretic k-nearest classifier and pseudo amino acid composition. Biochem Biophys Res Commun 337:752–756

    PubMed  CAS  Google Scholar 

  • Shen HB, Chou KC (2005b) Using optimized evidence-theoretic K-nearest neighbor classifier and pseudo amino acid composition to predict membrane protein types. Biochem Biophys Res Commun 334:288–292

    PubMed  CAS  Google Scholar 

  • Shen HB, Chou KC (2006) Ensemble classifier for protein fold pattern recognition. Bioinformatics 22:1717–1722

    PubMed  CAS  Google Scholar 

  • Shen HB, Chou KC (2007a) EzyPred: a top–down approach for predicting enzyme functional classes and subclasses. Biochem Biophys Res Comm 364:53–59

    PubMed  CAS  Google Scholar 

  • Shen HB, Chou KC (2007b) Gpos-PLoc: an ensemble classifier for predicting subcellular localization of Gram-positive bacterial proteins. Protein Eng Des Sel 20:39–46

    PubMed  CAS  Google Scholar 

  • Shen HB, Chou KC (2007c) Hum-mPLoc: An ensemble classifier for large-scale human protein subcellular location prediction by incorporating samples with multiple sites. Biochem Biophys Res Commun 355:1006–1011

    PubMed  CAS  Google Scholar 

  • Shen HB, Chou KC (2007d) Nuc-PLoc: A new web-server for predicting protein subnuclear localization by fusing PseAA composition and PsePSSM. Protein Eng Des Sel 20:561–567

    PubMed  CAS  Google Scholar 

  • Shen HB, Chou KC (2007e) Signal–3L: a 3-layer approach for predicting signal peptide. Biochem Biophys Res Comm 363:297–303

    PubMed  CAS  Google Scholar 

  • Shen HB, Chou KC (2007f) Using ensemble classifier to identify membrane protein types. Amino Acids 32:483–488

    PubMed  CAS  Google Scholar 

  • Shen HB, Chou KC (2007g) Virus-PLoc: A fusion classifier for predicting the subcellular localization of viral proteins within host and virus-infected cells. Biopolymers 85:233–240

    PubMed  CAS  Google Scholar 

  • Shen HB, Chou KC (2008) PseAAC: a flexible web-server for generating various kinds of protein pseudo amino acid composition. Anal Biochem 373:386–388

    PubMed  CAS  Google Scholar 

  • Shen HB, Yang J, Chou KC (2006) Fuzzy KNN for predicting membrane protein types from pseudo amino acid composition. J Theor Biol 240:9–13

    PubMed  CAS  Google Scholar 

  • Shen HB, Yang J, Chou KC (2007) Euk-PLoc: an ensemble classifier for large-scale eukaryotic protein subcellular location prediction. Amino Acids 33:57–67

    PubMed  CAS  Google Scholar 

  • Shi JY, Zhang SW, Pan Q, Cheng YM, Xie J (2007) Prediction of protein subcellular localization by support vector machines using multi-scale energy and pseudo amino acid composition. Amino Acids 33:69–74

    PubMed  CAS  Google Scholar 

  • Subramani P, Sahu R, Verma S (2006) Feature selection using haar wavelet power spectrum. BMC Bioinform 7:432

    Google Scholar 

  • Wang M, Yang J, Liu GP, Xu ZJ, Chou KC (2004) Weighted-support vector machines for predicting membrane protein types based on pseudo amino acid composition. Protein Eng Des Sel 17:509–516

    PubMed  CAS  Google Scholar 

  • Wang SQ, Yang J, Chou KC (2006) Using stacked generalization to predict membrane protein types based on pseudo amino acid composition. J Theor Biol 242:941–946

    PubMed  CAS  Google Scholar 

  • Wang T, Yang J, Shen HB, Chou KC (2008) Predicting membrane protein types by the LLDA algorithm. Protein Peptide Lett 15: no. 9

    Google Scholar 

  • Wang XC, Paliwal KK (2003) Feature extraction and dimensionality reduction algorithms and their applications in vowel recognition. Pattern Recogn 36:2429–2439

    Google Scholar 

  • Widodo A, Yang BS (2007) Application of nonlinear feature extraction and support vector machines for fault diagnosis of induction motors. Expert Syst Appl 33:241–250

    Google Scholar 

  • Xiao X, Chou KC (2007) Digital coding of amino acids based on hydrophobic index. Protein Peptide Lett 14:871–875

    CAS  Google Scholar 

  • Xiao X, Lin WZ, Chou KC (2008) Using grey dynamic modeling and pseudo amino acid composition to predict protein structural classes. J Comput Chem 29:2018–2024

    PubMed  CAS  Google Scholar 

  • Xiao X, Shao SH, Ding YS, Huang ZD, Chou KC (2006a) Using cellular automata images and pseudo amino acid composition to predict protein subcellular location. Amino Acids 30:49–54

    PubMed  CAS  Google Scholar 

  • Xiao X, Shao SH, Huang ZD, Chou KC (2006b) Using pseudo amino acid composition to predict protein structural classes: Approached with complexity measure factor. J Comput Chem 27:478–482

    PubMed  Google Scholar 

  • Yang FS (1999) The engineering analysis and application of wavelet transform. Science Press, Beijing

    Google Scholar 

  • Zhang GY, Fang BS (2008) Predicting the cofactors of oxidoreductases based on amino acid composition distribution and Chou’s amphiphilic pseudo amino acid composition. J Theor Biol 253:310–315

    PubMed  CAS  Google Scholar 

  • Zhang SW, Zhang YL, Yang HF, Zhao CH, Pan Q (2008a) Using the concept of Chou’s pseudo amino acid composition to predict protein subcellular localization: an approach by incorporating evolutionary information and von Neumann entropies. Amino Acids 34:565–572

    PubMed  CAS  Google Scholar 

  • Zhang TL, Ding Y, Chou KC (2006) Prediction of protein subcellular location using hydrophobic patterns of amino acid sequence. Comput Biol Chem 30:367–371

    PubMed  CAS  Google Scholar 

  • Zhang TL, Ding YS, Chou KC (2008b) Prediction protein structural classes with pseudo amino acid composition: approximate entropy and hydrophobicity pattern. J Theor Biol 250:186–193

    PubMed  CAS  Google Scholar 

  • Zhou GP (1998) An intriguing controversy over protein structural class prediction. J Protein Chem 17:729–738

    PubMed  CAS  Google Scholar 

  • Zhou GP, Assa-Munt N (2001) Some insights into protein structural class prediction. Proteins 44:57–59

    PubMed  CAS  Google Scholar 

  • Zhou X, Wang X, Dougherty ER (2003) Binarization of microarray data based on a mixture model. J Mol Cancer Therapy 2:679–684

    CAS  Google Scholar 

  • Zhou XB, Chen C, Li ZC, Zou XY (2007) Using Chou’s amphiphilic pseudo-amino acid composition and support vector machine for prediction of enzyme subfamily classes. J Theor Biol 248:546–551

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the National Nature Science Foundation of China (no. 20575082), the Ph.D. Programs Foundation of Ministry of Education of China (no. 20070558010), the Natural Science Foundation of Guangdong Province (no. 7003714), the Scientific Technology Project of Guangdong Province (no. 2005B30101003) and the Scientific Technology Project of Guangzhou City (no. 2007Z3-E0441).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Yong Zou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, ZC., Zhou, XB., Dai, Z. et al. Prediction of protein structural classes by Chou’s pseudo amino acid composition: approached using continuous wavelet transform and principal component analysis. Amino Acids 37, 415–425 (2009). https://doi.org/10.1007/s00726-008-0170-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-008-0170-2

Keywords

Navigation