Skip to main content
Log in

Laccase-catalyzed carbon–nitrogen bond formation: coupling and derivatization of unprotected l-phenylalanine with different para-hydroquinones

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Unprotected l-phenylalanine was derivatized by an innovative enzymatic method by means of laccases from Pycnoporus cinnabarinus and Myceliophthora thermophila. During the incubation of l-phenylalanine with para-hydroquinones using laccase as biocatalyst, one or two main products were formed. Dependent on the substitution grade of the hydroquinones mono- and diaminated products were detected. Differences of the used laccases are discussed. The described reactions are of interest for the derivatization of amino acids and a synthesis of pharmacological-active amino acid structures in the field of white biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Berger S, Hertl P, Rieker A (1988) Physical and chemical analysis of quinones. In: Patai S, Rappoport Z (eds) The chemistry of the quinoid compounds, 2 edn. John Wiley and Sons Ltd., New York, pp 29–86

  • Bollag JM (1992) Enzymes catalyzing oxidative coupling reactions of pollutants. In: Sigel H, Sigel A (eds) Metal ions in biological systems, 28th edn. Marcel Dekker Inc, New York, pp 205–217

    Google Scholar 

  • Bourbonnais R, Paice MG (1990) Oxidation of non-phenolic substrates—an expanded role for laccase in lignin biodegradation. FEBS Lett 267:99–102

    Article  PubMed  CAS  Google Scholar 

  • Burton SG (2003) Laccases and phenol oxidases in organic synthesis—a review. Curr Org Chem 7:1317–1331

    Article  CAS  Google Scholar 

  • Chakraborty M, McConville DB, Niu Y, Tessier CA, Youngs WJ (1998) Reactions of primary and secondary amines with substituted hydroquinones: nuclear amination, side-chain amination, and indolequinone formation. J Org Chem 63:7563–7567

    Article  PubMed  CAS  Google Scholar 

  • Claus H (2003) Laccases and their occurrence in prokaryotes. Arch Microbiol 179:145–150

    PubMed  CAS  Google Scholar 

  • Davin LB, Lewis NG (2005) Dirigent phenoxy radical coupling: advances and challenges. Curr Opin Biotechnol 16:398–406

    Article  PubMed  CAS  Google Scholar 

  • Falci KJ, Franck RW, Smith GP (1977) Approaches to the mitomycins: photochemistry of aminoquinones. J Org Chem 42:3317–3319

    Article  PubMed  CAS  Google Scholar 

  • Finley K (1988) In: Patai S, Rappoport Z (eds) The chemistry of the quinoid compounds. 2 edn. John Wiley and Sons Ltd., New York, pp 537–717

  • Fleck WF, Strauss DG, Meyer J, Porstendorfer G (1978) Fermentation, isolation, and biological activity of maduramycin: a new antibiotic from Actinomadura rubra. Z Allg Mikrobiol 18:389–398

    Article  PubMed  CAS  Google Scholar 

  • Gianfreda L, Xu F, Bollag JM (1999) Laccases: a useful group of oxidoreductive enzymes. Bioremediat J 3:1–25

    Article  CAS  Google Scholar 

  • Jonas U (1997) Biotransformation von Biarylverbindungen durch Weißfäulepilze unter besonderer Berücksichtigung des ligninolytischen Enzymsystems von Pycnoporus cinnabarinus und Trametes versicolor. Dissertation, Mat. Nat. Fakultät. E.-M.-Arndt-Universität, Greifswald

  • Jonas U, Hammer E, Schauer F, Bollag JM (1998) Transformation of 2-hydroxydibenzofuran by laccases of white rot fungi Trametes versicolor and Pycnoporus cinnabarinus and characterization of oligomerization products. Biodegradation 8:321–328

    Article  CAS  Google Scholar 

  • Lai JH, Pham H, Hangauer DG (1996) Synthesis of a vicinal tricarbonyl amide derivative of l-phenylalanine. J Org Chem 61:1872–1874

    Article  PubMed  CAS  Google Scholar 

  • Manda K, Hammer E, Mikolasch A, Gördes D, Thurow K, Schauer F (2006) Laccase-induced derivatization of unprotected amino acid l-tryptophan by coupling with p-hydroquinone 2, 5-dihydroxy-N-(2-hydroxyethyl)-benzamide. Amino Acids 31:409–419

    Article  PubMed  CAS  Google Scholar 

  • Manda K, Hammer E, Mikolasch A, Niedermeyer T, Dec J, Jones AD, Benesi AJ, Schauer F, Bollag JM (2005) Laccase-induced cross-coupling of 4-aminobenzoic acid with para-dihydroxylated compounds 2, 5-dihydroxy-N-(2-hydroxyethyl)-benzamide and 2, 5-dihydroxybenzoic acid methyl ester. J Mol Catal B Enzym 35:86–92

    Article  CAS  Google Scholar 

  • Michalek H, Szarkowska L (1959) The quinone–amino acid complexes and polyphenolase. Acta Biochimica Polonica 6:399–409

    CAS  Google Scholar 

  • Mikolasch A, Niedermeyer THJ, Lalk M, Witt S, Seefeldt S, Hammer E, Schauer F, Gesell M, Hessel S, Jülich WD, Lindequist U (2006) Novel penicillins synthesized by biotransformation using laccase from Trametes spec. Chem Pharm Bull 54:632–638

    Article  PubMed  CAS  Google Scholar 

  • Mizushina Y, Ueno T, Oda M, Yamaguchi T, Saneyoshi M, Sakaguchi K (2000) The biochemical mode of inhibition of DNA polymerase β by α rubromycin. Biochem Biophys Acta 1523:172–181

    PubMed  CAS  Google Scholar 

  • Niedermeyer THJ, Mikolasch A, Lalk M (2005) Nuclear amination catalyzed by fungal laccases: reaction products of p-hydroquinones and primary aromatic amines. J Org Chem 70:2002–2008

    Article  PubMed  CAS  Google Scholar 

  • Pachatouridis C, Iakovidou Z, Myoglou E, Mourelatos D, Pantazaki AA, Papageorgiou VP, Kotsis A, Liakopoulou-Kyriakides M (2002) Synthesis and cytogenetic effects of aminoquinone derivatives with a di- and tripeptide. Anti Cancer Drugs 13:367–372

    Article  PubMed  CAS  Google Scholar 

  • Schauer F, Lindequist U, Hammer E, Jülich WD, Schäfer A, Jonas U (2001) Biotransformation von biologisch aktiven Verbindungen aus verschiedenen chemischen Stoffklassen mittels der Enzyme Laccase und Manganperoxidase. Patentschrift. WO 01/98518 A2

  • Tatsumi K, Freyer A, Minard RD, Bollag JM (1994a) Enzymatic coupling of chloroanilines with syringic acid, vanillic acid and protocatechuic acid. Soil Biol Biochem 26:735–742

    Article  CAS  Google Scholar 

  • Tatsumi K, Freyer A, Minard RD, Bollag JM (1994b) Enzyme-mediated coupling of 3, 4-dichloroanilin and ferulic acid: a model for pollutant binding to humic materials. Environ Sci Technol 28:210–215

    Article  CAS  Google Scholar 

  • Thurston CF (1994) The structure and function of fungal laccases. Microbiol 140:19–26

    Article  CAS  Google Scholar 

  • Ulrich H, Richter R (1977) Die para-Chinone der Benzol- und Naphthalin-Reihe. In: Houben-Weyl (eds) Methoden der organischen Chemie. 4. Aufl. (Band VII/3a), Chinone, Teil 1. Thieme-Verlag, Stuttgart, pp 402–413

  • Yamaoka T, Nagakura S (1971) Reactions of aliphatic amines with p-benzoquinone and its chloro derivatives. Bull Chem Soc Jpn 44:2971–2975

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support by means of a scholarship from the government of Mecklenburg-Vorpommern is gratefully acknowledged. We thank M. Lalk (Institute of Pharmacy, University of Greifswald), K. Weisz (Institute of Biochemistry, University of Greifswald) for providing NMR data and R. Jack (Institute of Immunology, University of Greifswald) for help in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Hahn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hahn, V., Mikolasch, A., Manda, K. et al. Laccase-catalyzed carbon–nitrogen bond formation: coupling and derivatization of unprotected l-phenylalanine with different para-hydroquinones. Amino Acids 37, 315–321 (2009). https://doi.org/10.1007/s00726-008-0154-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-008-0154-2

Keywords

Navigation