Skip to main content

Advertisement

Log in

Some lessons from the tissue transglutaminase knockout mouse

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Transglutaminase 2 (TG2) is an inducible transamidating acyltransferase that catalyzes Ca2+-dependent protein modifications. It acts as a G protein in transmembrane signaling and as a cell surface adhesion mediator, this distinguishes it from other members of the transglutaminase family. The sequence motifs and domains revealed in the TG2 structure, can each be assigned distinct cellular functions, including the regulation of cytoskeleton, cell adhesion, and cell death. Though many biological functions of the enzyme have already been described or proposed previously, studies of TG2 null mice by our laboratory during the past years revealed several novel in vivo roles of the protein. In this review we will discuss these novel roles in their biological context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Akakura S, Singh S, Spataro M (2004) The opsonin MFG-E8 is a ligand for the alphavbeta5 integrin and triggers DOCK180-dependent Rac1 activation for the phagocytosis of apoptotic cells. Exp Cell Res 292:403–416

    Article  PubMed  CAS  Google Scholar 

  • Akerman P, Cote P, Yang SQ et al (1992) Antibodies to tumor necrosis factor-alpha inhibit liver regeneration after partial hepatectomy. Am J Physiol 263:G579–G585

    PubMed  CAS  Google Scholar 

  • Akimov SS, Krylov D, Fleischman LF et al (2000) Tissue transglutaminase is an integrin-binding adhesion coreceptor for fibronectin. J Cell Biol 148:825–838

    Article  PubMed  CAS  Google Scholar 

  • André C, Couton D, Gaston J et al (1999) β2-Adrenergic receptor-selective agonist clenbuterol prevents Fas-induced liver apoptosis and death in mice. Am J Physiol 276:G647–G654

    PubMed  Google Scholar 

  • Balajthy Z, Csomós K, Vámosi G et al (2006) Tissue-transglutaminase contributes to neutrophil granulocyte differentiation and functions. Blood 108:2045–2054

    Article  PubMed  CAS  Google Scholar 

  • Bernassola F, Federici M, Corazzari M et al (2002) Role of transglutaminase 2 in glucose tolerance: knockout mice studies and a putative mutation in a MODY patient. FASEB J 16:1371–1378

    Article  PubMed  CAS  Google Scholar 

  • Bratosin D, Estaquier J, Petit F et al (2001) Programmed cell death in mature erythrocytes: a model for investigating death effector pathways operating in the absence of mitochondria. Cell Death Differ 8:1143–1156

    Article  PubMed  CAS  Google Scholar 

  • Broten J, Michalopoulos G, Petersen B et al (1999) Adrenergic stimulation of hepatocyte growth factor expression. Biochem Biophys Res Commun 262:76–79

    Article  PubMed  CAS  Google Scholar 

  • DeLaurenzi V, Melino G (2001) Gene disruption of tissue transglutaminase. Mol Cell Biol 21:148–155

    Article  CAS  Google Scholar 

  • Desbarats J, Newell MK (2000) Fas engagement accelerates liver regeneration after partial hepatectomy. Nat Med 6:920–923

    Article  PubMed  CAS  Google Scholar 

  • Ellison RTIII, Giehl TJ (1991) Killing of gram-negative bacteria by lactoferrin and lysozyme. J Clin Invest 88:1080–1091

    Article  PubMed  CAS  Google Scholar 

  • Fadok VA, Voelker DR, Campbell PA et al (1992) Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol 148:2207–2216

    PubMed  CAS  Google Scholar 

  • Fadok VA, Bratton DL, Konowal A et al (1998) Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest 101:890–898

    Article  PubMed  CAS  Google Scholar 

  • Falasca L, Iadevaia V, Ciccosanti F et al (2005) Transglutaminase type II is a key element in the regulation of the anti-inflammatory response elicited by apoptotic cell engulfment. J Immunol 174:7330–7740

    PubMed  CAS  Google Scholar 

  • Falasca L, Farrace MG, Rinaldi A et al (2008) Transglutaminase type II is involved in the pathogenesis of endotoxic shock. J Immunol 180:2616–2624

    PubMed  CAS  Google Scholar 

  • Fausto N, Campbell JS, Riehle KJ (2006) Liver regeneration. Hepatology 43:S45–S53

    Article  PubMed  CAS  Google Scholar 

  • Fenchel G, Storf R, Michel J et al (1988) Relationship between the high-energy phosphate content and various left ventricular functional parameters of the normal and hypertrophied heart after global ischemia and reperfusion. Thorac Cardiovasc Surg 36:75–79

    Article  PubMed  CAS  Google Scholar 

  • Feng JF, Rhee SG, Im MJ (1996) Evidence that phospholipase delta1 is the effector in the Gh (Transglutaminase II)-mediated signaling. J Biol Chem 271:16451–16454

    Article  PubMed  CAS  Google Scholar 

  • Fésüs L, Piacentini M (2002) Transglutaminase 2: an enigmatic enzyme with diverse functions. Trends Biochem Sci 27:534–539

    Article  PubMed  Google Scholar 

  • Fesus L, Tarcsa E (1989) Formation of N epsilon-(gamma-glutamyl)-lysine isodipeptide in Chinese-hamster ovary cells. Biochem J 263:843–848

    PubMed  CAS  Google Scholar 

  • Fesus L, Tarcsa E, Kedei N et al (1991) Degradation of cells dying by apoptosis leads to accumulation of epsilon(gamma-glutamyl)lysine isodipeptide in culture fluid and blood. FEBS Lett 284:109–112

    Article  PubMed  CAS  Google Scholar 

  • Folk JE, Chung SI (1985) Transglutaminases. Methods Enzymol 113:358–375

    Article  PubMed  CAS  Google Scholar 

  • Grenard P, Bates MK, Aeschlimann D (2001) Evolution of transglutaminase genes: identification of a transglutaminase gene cluster on human chromosome 15q15. Structure of the gene encoding transglutaminase X and a novel gene family member, transglutaminase Z. J Biol Chem 276:33066–33078

    Article  PubMed  CAS  Google Scholar 

  • Hampton MB, Kettle AJ, Winterbourn CC (1998) Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood 92:3007–3017

    PubMed  CAS  Google Scholar 

  • Hang J, Zemskov EA, Lorand L et al (2005) Identification of a novel recognition sequence for fibronectin within the NH2-terminal beta-sandwich domain of tissue transglutaminase. J Biol Chem 280:23675–23683

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa G, Suwa M, Ichikawa Y et al (2003) A novel function of tissue-type transglutaminase: protein disulphide isomerase. Biochem J 373:793–803

    Article  PubMed  CAS  Google Scholar 

  • Herman JF, Mangala LS, Mehta K (2006) Implications of increased tissue transglutaminase (TG2) expression in drug-resistant breast cancer (MCF-7) cells. Oncogene 25:3049–3058

    Article  PubMed  CAS  Google Scholar 

  • Iwai M, Cui TX, Kitamura H et al (2001) Increased secretion of tumour necrosis factor and interleukin 6 from isolated, perfused liver of rats after partial hepatectomy. Cytokine 13:60–64

    Article  PubMed  CAS  Google Scholar 

  • Janiak A, Zemskov EA, Belkin AM (2006) Cell surface transglutaminase promotes RhoA activation via integrin clustering and suppression of the Src-p190RhoGAP signaling pathway. Mol Biol Cell 17:1606–1619

    Article  PubMed  CAS  Google Scholar 

  • Jeremias I, Kupatt C, Martin-Villaba A et al (2000) Involvement of CD95/Apo/Fas in cell death after myocardial ischemia. Circulation 102:915–920

    PubMed  CAS  Google Scholar 

  • Kim HI, Rikihisa Y (2002) Roles of p38 mitogen-activated protein kinase, NF-kappaB, and protein kinase C in proinflammatory cytokine mRNA expression by human peripheral blood leukocytes, monocytes, and neutrophils in response to Anaplasma phagocytophila. Infect Immun 70:4132–4141

    Article  PubMed  CAS  Google Scholar 

  • Kojima S, Nara K, Rifkin DB (1993) Requirement for transglutaminase in the activation of latent transforming growth factor-beta in bovine endothelial cells. J Cell Biol 121:439–448

    Article  PubMed  CAS  Google Scholar 

  • Kosai K, Matsumoto K, Nagata S et al (1998) Abrogation of Fas-induced fulminant hepatic failure in mice by hepatocytes growth factor. Biochem Biophys Res Commun 244:683–690

    Article  PubMed  CAS  Google Scholar 

  • Lanotte M, Martin-Thouvenin V, Najman S et al (1991) NB4, a maturation inducible cell line with t(15;17) marker isolated from a human acute promyelocytic leukemia (M3). Blood 77:1080–1086

    PubMed  CAS  Google Scholar 

  • Lopez-Boado YS, Espinola M, Bahr S et al (2004) Neutrophil serine proteinases cleave bacterial flagellin, abrogating its host response-inducing activity. J Immunol 72:509–515

    Google Scholar 

  • Lorand L, Graham RM (2003) Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat Rev Mol Cell Biol 4:140–156

    Article  PubMed  CAS  Google Scholar 

  • Maechler P, Wollheim CB (2001) Mitochondrial function in normal and diabetic beta-cells. Nature 414:807–812

    Article  PubMed  CAS  Google Scholar 

  • Mastroberardino PG, Farrace MG, Viti I et al (2006) “Tissue” transglutaminase contributes to the formation of disulphide bridges in proteins of mitochondrial respiratory complexes. Biochim Biophys Acta 157:1357–1365

    Google Scholar 

  • Michalopoulos GK, DeFrances MC (1997) Liver regeneration. Science 276:60–66

    Article  PubMed  CAS  Google Scholar 

  • Mishra S, Melino G, Murphy LJ (2007) Transglutaminase 2 kinase activity facilitates protein kinase A-induced phosphorylation of retinoblastoma protein. J Biol Chem 282:18108–18115

    Article  PubMed  CAS  Google Scholar 

  • Monsonego A, Friedmann I, Shani Y et al (1998) GTP-dependent conformational changes associated with the functional switch between Galpha and cross-linking activities in brain-derived tissue transglutaminase. J Mol Biol 282:713–720

    Article  PubMed  CAS  Google Scholar 

  • Nakaoka H, Perez DM, Baek KJ et al (1994) Gh: a GTP binding protein with transglutaminase activity and receptor signaling function. Science 254:1593–1596

    Article  Google Scholar 

  • Nanda N, Iismaa SE, Owens WA et al (2001) Targeted inactivation of Gh/tissue transglutaminase II. J Biol Chem 276:20673–20678

    Article  PubMed  CAS  Google Scholar 

  • Nardacci R, Lo Iacono O, Ciccosanti F et al (2003) Transglutaminase type II plays a protective role in hepatic injury. Am J Pathol 162:1293–1303

    PubMed  CAS  Google Scholar 

  • Nishiura H, Shibuya Y, Yamamoto T (1998) S19 ribosomal protein cross-linked dimer causes monocyte-predominant infiltration by means of molecular mimicry to complement C5a. Lab Invest 78:1615–1623

    PubMed  CAS  Google Scholar 

  • Piacentini M, Davies PJA, Fésüs L (1994) Tissue transglutaminase in cells undergoing apoptosis. In: Tomei LD, Cope FO (eds) Apoptosis. The molecular basis of cell death. Current communications in cell and molecular biology, vol. 3. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Piacentini M, Farrace MG, Piredda L et al (2002) Transglutaminase overexpression sensitizes neuronal cell lines to apoptosis by increasing mitochondrial membrane potential and cellular oxidative stress. J Neurochem 81:1061–1072

    Article  PubMed  CAS  Google Scholar 

  • Piredda L, Amendola A, Colizzi V et al (1997) Lack of ‘tissue’ transglutaminase protein cross-linking leads to leakage of macromolecules from dying cells: relationship to development of autoimmunity in MRLlpr/lpr mice. Cell Death Differ 4:463–472

    Article  PubMed  CAS  Google Scholar 

  • Ramarao CS, Denker JM, Perez DM et al (1992) Genomic organization and expression of the human alpha 1B-adrenergic receptor. J Biol Chem 267:21936–21945

    PubMed  CAS  Google Scholar 

  • Rodolfo C, Mormone E, Matarrese P et al (2004) Tissue transglutaminase is a multifunctional BH3-only protein. J Biol Chem 279:54783–54792

    Article  PubMed  CAS  Google Scholar 

  • Rose DM, Fadok VA, Riches DW et al (1995) Autocrine/paracrine involvement of platelet-activating factor and transforming growth factor-beta in the induction of phosphatidylserine recognition by murine macrophages. J Immunol 155:5819–5825

    PubMed  CAS  Google Scholar 

  • Sarang Z, Molnár P, Németh T et al (2005) Tissue transglutaminase (TG2) acting as G protein protects hepatocytes against Fas-mediated cell death in mice. Hepatology 42:578–587

    Article  PubMed  CAS  Google Scholar 

  • Sarang Z, Mádi A, Koy C et al (2007) Tissue transglutaminase (TG2) facilitates phosphatidylserine exposure and calpain activity in calcium-induced death of erythrocytes. Cell Death Differ 14:1842–1844

    Article  PubMed  CAS  Google Scholar 

  • Stuart KA, Riordan SM, Lidder S et al (2000) Hepatocyte growth factor/scatter factor-induced intracellular signalling. Int J Exp Pathol 81:17–30

    Article  PubMed  CAS  Google Scholar 

  • Szegezdi E, Szondy Z, Nagy L et al (2000) Apoptosis-linked in vivo regulation of the tissue transglutaminase gene promoter. Cell Death Differ 7:1225–1233

    Article  PubMed  CAS  Google Scholar 

  • Szondy Z, Molnar P, Nemes Z et al (1997) Differential expression of tissue transglutaminase during in vivo apoptosis of thymocytes induced via distinct signalling pathways. FEBS Lett 104:307–313

    Article  Google Scholar 

  • Szondy Z, Sarang Z, Molnar P et al (2003) Transglutaminase 2−/− mice reveal a phagocytosis-associated crosstalk between macrophages and apoptotic cells. Proc Natl Acad Sci USA 100:7812–7817

    Article  PubMed  CAS  Google Scholar 

  • Szondy Z, Mastroberardino PG, Váradi J et al (2006) Tissue transglutaminase (TG2) protects cardiomyocytes against ischemia/reperfusion injury by regulating ATP synthesis. Cell Death Differ 13:1827–1829

    Article  PubMed  CAS  Google Scholar 

  • Thomázy V, Fésüs L (1989) Differential expression of tissue transglutaminase in human cells. An immunohistochemical study. Cell Tissue Res 255:215–224

    Article  PubMed  Google Scholar 

  • Upchurch HF, Conway E, Patterson MK et al (1991) Localization of cellular transglutaminase on the extracellular matrix after wounding: characteristics of the matrix bound enzyme. Cell Physiol 149:375–382

    Article  CAS  Google Scholar 

  • Webber EM, Bruix J, Pierce RH et al (1998) Tumor necrosis factor primes hepatocytes for DNA replication in the rat. Hepatology 28:1226–1234

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Liu S-L, Zhu J-L (2000) Roles of tissue transglutaminase in ethanol-induced inhibition of hepatocyte proliferation and α1-adrenergic signal transduction. J Biol Chem 275:22213–22219

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi S, Yamaoka M, Okuyama M et al (1999) Elevated circulating levels and cardiac secretion of soluble Fas ligand in patients with congestive heart failure. Am J Cardiol 83:1500–1503

    Article  PubMed  CAS  Google Scholar 

  • Yin X-M, Wang Y, Gross A et al (1999) Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature 400:886–891

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

These studies were supported by Hungarian grants from the National Research Fund (OTKA T049445 and NI67877), Ministry of Welfare T (115/2006) and the EU HRTN-CT-2006-036032.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Szondy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarang, Z., Tóth, B., Balajthy, Z. et al. Some lessons from the tissue transglutaminase knockout mouse. Amino Acids 36, 625–631 (2009). https://doi.org/10.1007/s00726-008-0130-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-008-0130-x

Keywords

Navigation