Skip to main content

Advertisement

Log in

Transglutaminases and their substrates in biology and human diseases: 50 years of growing

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Transglutaminase is an enzyme able to play more than one enzymatic action, acting on a variety of different substrates. The growth of knowledge about the members of the enzyme transglutaminase’s family and its substrates since the last 50 years indicates a large interest and curiosity about this protein, whose function and structure was, but still is, an important object of research. On the other hand, the involvement in a number of human diseases together with the lack of knowledge about the biological functions played by some of the most studied members of this family, make this enzyme a fascinating field of study. The history of this enzyme and its substrates, whose cross-linking action was reported for the first time 50 years ago, suggests that an effort to increase knowledge and communication among researchers is required. To achieve this important result, 10 years ago an internet web page called worldwide happening around transglutaminase (WHAT) was created. Driven by these experiences, novel points-of-view to look at Transglutaminase and its substrates may be identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Abe S, Yamashita K, Kohno H, Ohkubo Y (2000) Involvement of transglutaminase in the receptor-mediated endocytosis of mouse peritoneal macrophages. Biol Pharm Bull 23(12):1511–1513

    PubMed  CAS  Google Scholar 

  • Adany R, Bardos H, Antal M, Modis L, Sarvary A, Szucs S et al (2001) Factor XIII of blood coagulation as a nuclear crosslinking enzyme. Thromb Haemost 85(5):845–851

    PubMed  CAS  Google Scholar 

  • Aeschlimann D, Paulsson M, Mann K (1992) Identification of Gln726 in nidogen as the amine acceptor in transglutaminase-catalyzed cross-linking of laminin-nidogen complexes. J Biol Chem 267(16):11316–11321

    PubMed  CAS  Google Scholar 

  • Aeschlimann D, Kaupp O, Paulsson M (1995) Transglutaminase-catalyzed matrix cross-linking in differentiating cartilage: identification of osteonectin as a major glutaminyl substrate. J Cell Biol 129(3):881–892

    PubMed  CAS  Google Scholar 

  • Aho S (2004) Many faces of periplakin: domain-specific antibodies detect the protein throughout the epidermis, explaining the multiple protein-protein interactions. Cell Tissue Res 316(1):87–97

    PubMed  CAS  Google Scholar 

  • Ahvazi B, Boeshans KM, Steinert PM (2004) Crystal structure of transglutaminase 3 in complex with GMP: structural basis for nucleotide specificity. J Biol Chem 279(25):26716–26725

    PubMed  CAS  Google Scholar 

  • Akar U, Ozpolat B, Mehta K, Fok J, Kondo Y, Lopez-Berestein G (2007) Tissue transglutaminase inhibits autophagy in pancreatic cancer cells. Mol Cancer Res 5(3):241–219

    PubMed  CAS  Google Scholar 

  • Ando Y, Imamura S, Owada MK, Kannagi R (1991) Calcium-induced intracellular cross-linking of lipocortin I by tissue transglutaminase in A431 cells. Augmentation by membrane phospholipids. J Biol Chem 266(2):1101–1018

    PubMed  CAS  Google Scholar 

  • Andringa G, Lam KY, Chegary M, Wang X, Chase TN, Bennett MC (2004) Tissue transglutaminase catalyzes the formation of alpha-synuclein crosslinks in Parkinson’s disease. Faseb J 18(7):932–934

    PubMed  CAS  Google Scholar 

  • Ashton AC, Dolly JO (1997) Microtubules and microfilaments participate in the inhibition of synaptosomal noradrenaline release by tetanus toxin. J Neurochem 68(2):649–658

    PubMed  CAS  Google Scholar 

  • Asijee GM, Muszbek L, Kappelmayer J, Polgar J, Horvath A, Sturk A (1988) Platelet vinculin: a substrate of activated factor XIII. Biochim Biophys Acta 954(3):303–308

    PubMed  CAS  Google Scholar 

  • Balajthy Z, Csomós K, Vámosi G, Szántó A, Lanotte M, Fésüs L (2006) Tissue-transglutaminase contributes to neutrophil granulocyte differentiation and functions. Blood 108(6):2045–2054

    PubMed  CAS  Google Scholar 

  • Ballestar E, Abad C, Franco L (1996) Core histones are glutaminyl substrates for tissue transglutaminase. J Biol Chem 271(31):18817–18824

    PubMed  CAS  Google Scholar 

  • Beninati S, Mukherjee AB (1992) A novel transglutaminase-catalyzed posttranslational modification of HIV-1 aspartyl protease. Biochem Biophys Res Commun 187(3):1211–1218

    PubMed  CAS  Google Scholar 

  • Beninati S, Piacentini M, Cocuzzi ET, Autuori F, Folk JE (1988) Covalent incorporation of polyamines as gamma-glutamyl derivatives into CHO cell protein. Biochim Biophys Acta 952(3):325–333

    PubMed  CAS  Google Scholar 

  • Beninati S, Nicolini L, Jakus J, Passeggio A, Abbruzzese A (1995) Identification of a substrate site for transglutaminases on the human protein synthesis initiation factor 5A. Biochem J 305(Pt 3):725–728

    PubMed  CAS  Google Scholar 

  • Berbers GA, Feenstra RW, van den Bos R, Hoekman WA, Bloemendal H, de Jong WW (1984) Lens transglutaminase selects specific beta-crystallin sequences as substrate. Proc Natl Acad Sci USA 81(22):7017–7020

    PubMed  CAS  Google Scholar 

  • Bergamini CM, Signorini M, Poltronieri L (1987) Inhibition of erythrocyte transglutaminase by GTP. Biochim Biophys Acta 916(1):149–151

    PubMed  CAS  Google Scholar 

  • Borth W, Chang V, Bishop P, Harpel PC (1991) Lipoprotein (a) is a substrate for factor XIIIa and tissue transglutaminase. J Biol Chem 266(27):18149–18153

    PubMed  CAS  Google Scholar 

  • Bowness JM, Folk JE, Timpl R (1987) Identification of a substrate site for liver transglutaminase on the aminopropeptide of type III collagen. J Biol Chem 262(3):1022–1024

    PubMed  CAS  Google Scholar 

  • Bruce SE, Bjarnason I, Peters TJ (1985) Human jejunal transglutaminase: demonstration of activity, enzyme kinetics and substrate specificity with special relation to gliadin and coeliac disease. Clin Sci (Lond) 68(5):573–579

    CAS  Google Scholar 

  • Butler SJ, Landon M (1981) Transglutaminase-catalysed incorporation of putrescine into denatured cytochrome. Preparation of a mono-substituted derivative reactive with cytochrome c oxidase. Biochim Biophys Acta 670:214–221

    PubMed  CAS  Google Scholar 

  • Candi E, Tarcsa E, Digiovanna JJ, Compton JG, Elias PM, Marekov LN et al (1998) A highly conserved lysine residue on the head domain of type II keratins is essential for the attachment of keratin intermediate filaments to the cornified cell envelope through isopeptide crosslinking by transglutaminases. Proc Natl Acad Sci USA 95(5):2067–2072

    PubMed  CAS  Google Scholar 

  • Candi E, Paradisi A, Terrinoni A, Pietroni V, Oddi S, Cadot B et al (2004) Transglutaminase 5 is regulated by guanine-adenine nucleotides. Biochem J 381(Pt 1):313–319

    PubMed  CAS  Google Scholar 

  • Clarke DD, Mycek MJ, Neidle A, Waelsch H (1957) The incorporation of amines into proteins. Arch Biochem Biophys 79:338–354

    Google Scholar 

  • Clement S, Velasco PT, Murthy SN, Wilson JH, Lukas TJ, Goldman RD et al (1998) The intermediate filament protein, vimentin, in the lens is a target for cross-linking by transglutaminase. J Biol Chem 273(13):7604–7609

    PubMed  CAS  Google Scholar 

  • Cooper AJ, Sheu KR, Burke JR, Onodera O, Strittmatter WJ, Roses AD et al (1997) Transglutaminase-catalyzed inactivation of glyceraldehyde 3-phosphate dehydrogenase and alpha-ketoglutarate dehydrogenase complex by polyglutamine domains of pathological length. Proc Natl Acad Sci USA 94(23):12604–12609

    PubMed  CAS  Google Scholar 

  • Cordella-Miele E, Miele L, Mukherjee AB (1990) A novel transglutaminase-mediated post-translational modification of phospholipase A2 dramatically increases its catalytic activity. J Biol Chem 265(28):17180–17188

    PubMed  CAS  Google Scholar 

  • Coussons PJ, Kelly SM, Price NC, Johnson CM, Smith B, Sawyer L (1991) Selective modification by transglutaminase of a glutamine side chain in the hinge region of the histidine-388—glutamine mutant of yeast phosphoglycerate kinase. Biochem J 273(Pt 1):73–78

    PubMed  CAS  Google Scholar 

  • Coussons PJ, Price NC, Kelly SM, Smith B, Sawyer L (1992a) Factors that govern the specificity of transglutaminase-catalysed modification of proteins and peptides. Biochem J 282(Pt 3):929–930

    PubMed  CAS  Google Scholar 

  • Coussons PJ, Price NC, Kelly SM, Smith B, Sawyer L (1992b) Transglutaminase catalyses the modification of glutamine side chains in the C-terminal region of bovine beta-lactoglobulin. Biochem J 283(Pt 3):803–806

    PubMed  CAS  Google Scholar 

  • Davies PJ, Davies DR, Levitzki A, Maxfield FR, Milhaud P, Willingham MC, Pastan IH (1980) Transglutaminase is essential in receptor-mediated endocytosis of alpha 2-macroglobulin and polypeptide hormones. Nature 283(5743):162–167

    PubMed  CAS  Google Scholar 

  • Davies PJ, Cornwell MM, Johnson JD, Reggianni A, Myers M, Murtaugh MP (1984) Studies on the effects of dansylcadaverine and related compounds on receptor-mediated endocytosis in cultured cells. Diabetes Care 7(Suppl 1):35–41

    PubMed  CAS  Google Scholar 

  • Della Mea M, Caparros-Riuz D, Claparols I, Serafini-Fracassini D, Rigau J (2004) AtPng1p. The first plant Transglutaminase. Plant Physiol 135:2046–2054

    PubMed  CAS  Google Scholar 

  • Dondini L, Del Duca S, Dall’Agata L, Bassi R, Gastaldelli M, Della Mea M et al (2003) Suborganellar localisation and effect of light on Helianthus tuberosus chloroplast transglutaminases and their substrates. Planta 217(1):84–95

    PubMed  CAS  Google Scholar 

  • Doolittle RF, Watt KW, Cottrell BA, Strong DD, Riley M (1979) The amino acid sequence of the alpha-chain of human fibrinogen. Nature 280(5722):464–468

    PubMed  CAS  Google Scholar 

  • Dubbink HJ, Verkaik NS, Faber PW, Trapman J, Schroder FH, Romijn JC (1996) Tissue specific and androgen-regulated expression of human prostate-specific transglutaminase. Biochem J 315(Pt 3):901–908

    PubMed  CAS  Google Scholar 

  • Eligula L, Chuang L, Phillips ML, Motoki M, Seguro K, Muhlrad A (1998) Transglutaminase-induced cross-linking between subdomain 2 of G-actin and the 636–642 lysine-rich loop of myosin subfragment 1. Biophys J 74(2 Pt 1):953–963

    Article  PubMed  CAS  Google Scholar 

  • Eschenlauer SC, Page AP (2003) The Caenorhabditis elegans ERp60 homolog protein disulfide isomerase–3 has disulfide isomerase and transglutaminase-like cross-linking activity and is involved in the maintenance of body morphology. J Biol Chem 278(6):4227–4237

    PubMed  CAS  Google Scholar 

  • Esposito C, Caputo I (2005) Mammalian transglutaminases. Identification of substrates as a key to physiological function and physiopathological relevance. FEBS J 272(3):615–631

    PubMed  CAS  Google Scholar 

  • Esposito C, Pucci P, Amoresano A, Marino G, Cozzolino A, Porta R (1996) Transglutaminase from rat coagulating gland secretion. Post-translational modifications and activation by phosphatidic acids. J Biol Chem 271(44):27416–27423

    PubMed  CAS  Google Scholar 

  • Esposito C, Cozzolino A, Mariniello L, Stiuso P, De Maria S, Metafora S et al (1999) Enzymatic synthesis of vasoactive intestinal peptide analogs by transglutaminase. J Pept Res 53(6):626–632

    PubMed  CAS  Google Scholar 

  • Facchiano F, and Luini A (1990) Modification of Tetanus Toxin by Transglutaminase: Effect of Gangliosides. In Rappuoli et al (ed) Bacterial protein Toxins, Zbl. Bakt. Suppl., 19. Gustav Fisher, Stuttgart, New York

  • Facchiano F, Luini A (1992) Tetanus toxin potently stimulates tissue transglutaminase. A possible mechanism of neurotoxicity. J Biol Chem 267(19):13267–13271

    PubMed  CAS  Google Scholar 

  • Facchiano F, Benfenati F, Valtorta F, Luini A (1993a) Covalent modification of synapsin I by a tetanus toxin-activated transglutaminase. J Biol Chem 268(7):4588–4591

    PubMed  CAS  Google Scholar 

  • Facchiano F, Valtorta F, Benfenati F, Luini A (1993b) The transglutaminase hypothesis for the action of tetanus toxin. Trends Biochem Sci 18(9):327–329

    PubMed  CAS  Google Scholar 

  • Facchiano AM, Facchiano A, Facchiano F (2003) Active sequences collection (ASC) database: a new tool to assign functions to protein sequences. Nucleic Acids Res 31(1):379–382

    PubMed  CAS  Google Scholar 

  • Ferrandiz C, Perez-Paya E, Braco L, Abad C (1994) Gln5 selectively monodansylated substance P as a sensitive tool for interaction studies with membranes. Biochem Biophys Res Commun 203(1):359–365

    PubMed  CAS  Google Scholar 

  • Fesus L, Piacentini M (2002) Transglutaminase 2: an enigmatic enzyme with diverse functions. Trends Biochem Sci 27(10):534–539

    PubMed  CAS  Google Scholar 

  • Fleckenstein B, Molberg O, Qiao SW, Schmid DG, von der Mulbe F, Elgstoen K et al (2002) Gliadin T cell epitope selection by tissue transglutaminase in celiac disease. Role of enzyme specificity and pH influence on the transamidation versus deamidation process. J Biol Chem 277(37):34109–34116

    PubMed  CAS  Google Scholar 

  • Fleckenstein B, Qiao SW, Larsen MR, Jung G, Roepstorff P, Sollid LM (2004) Molecular characterization of covalent complexes between tissue transglutaminase and gliadin peptides. J Biol Chem 279(17):17607–17616

    PubMed  CAS  Google Scholar 

  • Folk JE (1983) Mechanism and basis for specificity of transglutaminase-catalyzed epsilon-(gamma-glutamyl) lysine bond formation. Adv Enzymol Relat Areas Mol Biol 54:1–56

    PubMed  CAS  Google Scholar 

  • Folk JE, Cole PW (1965) Structural Requirements of Specific Substrates for Guinea Pig Liver Transglutaminase. J Biol Chem 240:2951–2960

    PubMed  CAS  Google Scholar 

  • Fontana A, Spolaore B, Mero A, Veronese FM (2008) Site-specific modification and PEGylation of pharmaceutical proteins mediated by transglutaminase. Adv Drug Deliv Rev 60(1):13–28

    PubMed  CAS  Google Scholar 

  • Fortin PD, Walsh CT, Magarvey NA (2007) A transglutaminase homologue as a condensation catalyst in antibiotic assembly lines. Nature 448(7155):824–827

    PubMed  CAS  Google Scholar 

  • Ginsburg M, Wajda I, Waelsch H (1963) Transglutaminase and histamine incorporation in vivo. Biochem Pharmacol 12:251–264

    PubMed  CAS  Google Scholar 

  • Gorman JJ, Folk JE (1980a) Structural features of glutamine substrates for human plasma factor XIIIa (activated blood coagulation factor XIII). J Biol Chem 255(2):419–427

    PubMed  CAS  Google Scholar 

  • Gorman JJ, Folk JE (1980b) Transglutaminase amine substrates for photochemical labeling and cleavable cross-linking of proteins. J Biol Chem 255(3):1175–1180

    PubMed  CAS  Google Scholar 

  • Gorza L, Menabo R, Vitadello M, Bergamini CM, Di Lisa F (1996) Cardiomyocyte troponin T immunoreactivity is modified by cross-linking resulting from intracellular calcium overload. Circulation 93(10):1896–1904

    PubMed  CAS  Google Scholar 

  • Greenberg CS, Birckbichler PJ, Rice RH (1991) Transglutaminases: multifunctional cross-linking enzymes that stabilize tissues. Faseb J 5(15):3071–3077

    PubMed  CAS  Google Scholar 

  • Griffin M, Casadio R, Bergamini CM (2002) Transglutaminases: nature’s biological glues. Biochem J 368(Pt 2):377–396

    PubMed  CAS  Google Scholar 

  • Groenen PJ, Bloemendal H, de Jong WW (1992) The carboxy-terminal lysine of alpha B-crystallin is an amine-donor substrate for tissue transglutaminase. Eur J Biochem 205(2):671–674

    PubMed  CAS  Google Scholar 

  • Groenen PJ, Grootjans JJ, Lubsen NH, Bloemendal H, de Jong WW (1994a) Lys-17 is the amine-donor substrate site for transglutaminase in beta A3-crystallin. J Biol Chem 269(2):831–833

    PubMed  CAS  Google Scholar 

  • Groenen PJ, Smulders RH, Peters RF, Grootjans JJ, van den Ijssel PR, Bloemendal H et al (1994b) The amine-donor substrate specificity of tissue-type transglutaminase. Influence of amino acid residues flanking the amine-donor lysine residue. Eur J Biochem 220(3):795–799

    CAS  Google Scholar 

  • Halkier T, Andersen H, Vestergaard A, Magnusson S (1994) Bovine histidine-rich glycoprotein is a substrate for bovine plasma factor XIIIa. Biochem Biophys Res Commun 200(1):78–82

    PubMed  CAS  Google Scholar 

  • Hand D, Dias D, Haynes LW (2000) Stabilization of collagen-tailed acetylcholinesterase in muscle cells through extracellular anchorage by transglutaminase-catalyzed cross-linking. Mol Cell Biochem 204(1–2):65–76

    PubMed  CAS  Google Scholar 

  • Hasegawa G, Suwa M, Ichikawa Y, Ohtsuka T, Kumagai S, Kikuchi M et al (2003) A novel function of tissue-type transglutaminase: protein disulphide isomerase. Biochem J 373(Pt 3):793–803

    PubMed  CAS  Google Scholar 

  • Hettasch JM, Peoples KA, Greenberg CS (1997) Analysis of factor XIII substrate specificity using recombinant human factor XIII and tissue transglutaminase chimeras. J Biol Chem 272(40):25149–25156

    PubMed  CAS  Google Scholar 

  • Hohl D, Mehrel T, Lichti U, Turner ML, Roop DR, Steinert PM (1991) Characterization of human loricrin. Structure and function of a new class of epidermal cell envelope proteins. J Biol Chem 266:6626–6636

    PubMed  CAS  Google Scholar 

  • Hunter I, Sigmundsson K, Beauchemin N, Obrink B (1998) The cell adhesion molecule C-CAM is a substrate for tissue transglutaminase. FEBS Lett 425(1):141–144

    PubMed  CAS  Google Scholar 

  • Ikura K, Kita K, Fujita I, Hashimoto H, Kawabata N (1998) Identification of amine acceptor protein substrates of transglutaminase in liver extracts: use of 5-(biotinamido) pentylamine as a probe. Arch Biochem Biophys 356(2):280–286

    PubMed  CAS  Google Scholar 

  • Jäger M, Nir E, Weiss S (2006) Site-specific labeling of proteins for single-molecule FRET by combining chemical and enzymatic modification. Protein Sci 15(3):640–646

    PubMed  Google Scholar 

  • Jeffery CJ (1999) Moonlighting proteins. Trends Biochem Sci 24:8–11

    PubMed  CAS  Google Scholar 

  • Jeffery CJ (2003) Moonlighting proteins: old proteins learning new tricks. Trends Genet 19(8):415–417

    PubMed  CAS  Google Scholar 

  • Jensen PH, Lorand L, Ebbesen P, Gliemann J (1993) Type-2 plasminogen-activator inhibitor is a substrate for trophoblast transglutaminase and factor XIIIa. Transglutaminase-catalyzed cross-linking to cellular and extracellular structures. Eur J Biochem 214(1):141–146

    PubMed  CAS  Google Scholar 

  • Kaartinen MT, Pirhonen A, Linnala-Kankkunen A, Maenpaa PH (1997) Transglutaminase-catalyzed cross-linking of osteopontin is inhibited by osteocalcin. J Biol Chem 272(36):22736–22741

    PubMed  CAS  Google Scholar 

  • Kaartinen MT, El-Maadawy S, Rasanen NH, McKee MD (2002) Tissue transglutaminase and its substrates in bone. J Bone Miner Res 17(12):2161–2173

    PubMed  CAS  Google Scholar 

  • Kahlem P, Terré C, Green H, Djian P (1996) Peptides containing glutamine repeats as substrates for transglutaminase-catalyzed cross-linking: relevance to diseases of the nervous system. Proc Natl Acad Sci USA 93(25):14580–14585

    PubMed  CAS  Google Scholar 

  • Kamiya N, Tanaka T, Suzuki T, Takazawa T, Takeda S, Watanabe K et al (2003) S-peptide as a potent peptidyl linker for protein cross-linking by microbial transglutaminase from Streptomyces mobaraensis. Bioconjug Chem 14(2):351–357

    PubMed  CAS  Google Scholar 

  • Keresztessy Z, Csosz E, Hársfalvi J, Csomós K, Gray J, Lightowlers RN, Lakey JH, Balajthy Z, Fésüs L (2006) Phage display selection of efficient glutamine-donor substrate peptides for transglutaminase 2. Protein Sci 15(11):2466–2480

    PubMed  CAS  Google Scholar 

  • Kim SY, Kim IG, Chung SI, Steinert PM (1994) The structure of the transglutaminase 1 enzyme. Deletion cloning reveals domains that regulate its specific activity and substrate specificity. J Biol Chem 269(45):27979–27986

    PubMed  CAS  Google Scholar 

  • Kimura S, Aoki N (1986) Cross-linking site in fibrinogen for alpha 2-plasmin inhibitor. J Biol Chem 261(33):15591–15595

    PubMed  CAS  Google Scholar 

  • Knodler LA, Noiva R, Mehta K, McCaffery JM, Aley SB, Svard SG et al (1999) Novel protein-disulfide isomerases from the early-diverging protist Giardia lamblia. J Biol Chem 274(42):29805–29811

    PubMed  CAS  Google Scholar 

  • Kojima S, Inui T, Muramatsu H, Suzuki Y, Kadomatsu K, Yoshizawa M et al (1997) Dimerization of midkine by tissue transglutaminase and its functional implication. J Biol Chem 272(14):9410–9416

    PubMed  CAS  Google Scholar 

  • Larrè C, Chiarello M, Dudek S, Chenu M, Gueguen J (1993) Action of transglutaminase on the constitutive polypeptides of pealegumin. J Agric Food Chem 41:1816–1820

    Google Scholar 

  • Lee KN, Birckbichler PJ, Patterson MK Jr (1989) GTP hydrolysis by guinea pig liver transglutaminase. Biochem Biophys Res Commun 162(3):1370–1375

    PubMed  CAS  Google Scholar 

  • Lee KN, Maxwell MD, Patterson MK Jr, Birckbichler PJ, Conway E (1992) Identification of transglutaminase substrates in HT29 colon cancer cells: use of 5-(biotinamido)pentylamine as a transglutaminase-specific probe. Biochim Biophys Acta 1136(1):12–16

    PubMed  CAS  Google Scholar 

  • Lee KN, Lee CS, Tae WC, Jackson KW, Christiansen VJ, McKee PA (2000) Cross-linking of wild-type and mutant alpha 2-antiplasmins to fibrin by activated factor XIII and by a tissue transglutaminase. J Biol Chem 275(48):37382–37389

    PubMed  CAS  Google Scholar 

  • Lee DS, Matsumoto S, Matsumura Y, Mori T (2002) Identification of the epsilon-(gamma-glutamyl)lysine cross-linking sites in alpha-lactalbumin polymerized by mammalian and microbial transglutaminases. J Agric Food Chem 50(25):7412–7419

    PubMed  CAS  Google Scholar 

  • Lilley GR, Skill J, Griffin M, Bonner PL (1998) Detection of Ca2+-dependent transglutaminase activity in root and leaf tissue of monocotyledonous and dicotyledonous plants. Plant Physiol 117(3):1115–11123

    PubMed  CAS  Google Scholar 

  • Lorand L, Conrad SM (1984) Transglutaminases. Mol Cell Biochem 58:9–35

    PubMed  CAS  Google Scholar 

  • Lorand L, Parameswaran KN, Stenberg P, Tong YS, Velasco PT, Jonsson NA et al (1979) Specificity of guinea pig liver transglutaminase for amine substrates. Biochemistry 18(9):1756–1765

    PubMed  CAS  Google Scholar 

  • Lorand L, Velasco PT, Murthy SN, Wilson J, Parameswaran KN (1992) Isolation of transglutaminase-reactive sequences from complex biological systems: a prominent lysine donor sequence in bovine lens. Proc Natl Acad Sci USA 89(23):11161–11163

    PubMed  CAS  Google Scholar 

  • Lu W, Strohecker A, Ou Jh JH (2001) Post-translational modification of the hepatitis C virus core protein by tissue transglutaminase. J Biol Chem 276(51):47993–47999

    PubMed  CAS  Google Scholar 

  • Lynch GW, Slayter HS, Miller BE, McDonagh J (1987) Characterization of thrombospondin as a substrate for factor XIII transglutaminase. J Biol Chem 262(4):1772–1778

    PubMed  CAS  Google Scholar 

  • Maccioni RB, Seeds NW (1986) Transglutaminase and neuronal differentiation. Mol Cell Biochem 69(2):161–168

    PubMed  CAS  Google Scholar 

  • Madi A, Kele Z, Janaky T, Punyiczki M, Fesus L (2001) Identification of protein substrates for transglutaminase in Caenorhabditis elegans. Biochem Biophys Res Commun 283(4):964–968

    PubMed  CAS  Google Scholar 

  • Madi A, Hoffrogge R, Blasko B, Glocker MO, Fesus L (2004) Amine donor protein substrates for transglutaminase activity in Caenorhabditis elegans. Biochem Biophys Res Commun 315(4):1064–1069

    PubMed  CAS  Google Scholar 

  • Mahoney SA, Perry M, Seddon A, Bohlen P, Haynes L (1996) Transglutaminase forms midkine homodimers in cerebellar neurons and modulates the neurite-outgrowth response. Biochem Biophys Res Commun 224(1):147–152

    PubMed  CAS  Google Scholar 

  • Mahoney SA, Wilkinson M, Smith S, Haynes LW (2000) Stabilization of neurites in cerebellar granule cells by transglutaminase activity: identification of midkine and galectin-3 as substrates. Neuroscience 101(1):141–155

    PubMed  CAS  Google Scholar 

  • Mamone G, Ferranti P, Melck D, Tafuro F, Longobardo L, Chianese L et al (2004) Susceptibility to transglutaminase of gliadin peptides predicted by a mass spectrometry-based assay. FEBS Lett 562(1–3):177–182

    PubMed  CAS  Google Scholar 

  • Mandrusiak LM, Beitel LK, Wang X, Scanlon TC, Chevalier-Larsen E, Merry DE et al (2003) Transglutaminase potentiates ligand-dependent proteasome dysfunction induced by polyglutamine-expanded androgen receptor. Hum Mol Genet 12(13):1497–1506

    PubMed  CAS  Google Scholar 

  • Manjunath R, Chung SI, Mukherjee AB (1984) Crosslinking of uteroglobin by transglutaminase. Biochem Biophys Res Commun 121(1):400–407

    PubMed  CAS  Google Scholar 

  • Mantile G, Miele L, Cordella-Miele E, Singh G, Katyal SL, Mukherjee AB (1993) Human Clara cell 10-kDa protein is the counterpart of rabbit uteroglobin. J Biol Chem 268(27):20343–20351

    PubMed  CAS  Google Scholar 

  • Mariniello L, Esposito C, Di Pierro P, Cozzolino A, Pucci P, Porta R (1993a) Human-immunodeficiency-virus transmembrane glycoprotein gp41 is an amino acceptor and donor substrate for transglutaminase in vitro. Eur J Biochem 215(1):99–104

    PubMed  CAS  Google Scholar 

  • Mariniello L, Esposito C, Gentile V, Porta R (1993b) Transglutaminase covalently incorporates amines into human immunodeficiency virus envelope glycoprotein gp120 in vitro. Int J Pept Protein Res 42(2):204–206

    PubMed  CAS  Google Scholar 

  • Masuda M, Betancourt L, Matsuzawa T, Kashimoto T, Takao T, Shimonishi Y, Horiguchi Y (2000) Activation of rho through a cross-link with polyamines catalyzed by Bordetella dermonecrotizing toxin. EMBO J 19(4):521–530

    PubMed  CAS  Google Scholar 

  • Matsuda Y, Koshiba T, Osaki T, Suyama H, Arisaka F, Toh Y, Kawabata S (2007) An arthropod cuticular chitin-binding protein endows injured sites with transglutaminase-dependent mesh. J Biol Chem 282(52):37316–37324

    PubMed  CAS  Google Scholar 

  • Mazzeo MF, De Giulio B, Senger S, Rossi M, Malorni A, Siciliano RA (2003) Identification of transglutaminase-mediated deamidation sites in a recombinant alpha-gliadin by advanced mass-spectrometric methodologies. Protein Sci 12(11):2434–2442

    PubMed  CAS  Google Scholar 

  • McDonagh RP, McDonagh J, Petersen TE, Thogersen HC, Skorstengaard K, Sottrup-Jensen L et al (1981) Amino acid sequence of the factor XIIIa acceptor site in bovine plasma fibronectin. FEBS Lett 127(2):174–178

    PubMed  CAS  Google Scholar 

  • Mehul B, Bawumia S, Hughes RC (1995) Cross-linking of galectin 3, a galactose-binding protein of mammalian cells, by tissue-type transglutaminase. FEBS Lett 360(2):160–164

    PubMed  CAS  Google Scholar 

  • Mishra S, Murphy LJ (2004) Tissue transglutaminase has intrinsic kinase activity: identification of transglutaminase 2 as an insulin-like growth factor-binding protein-3 kinase. J Biol Chem 279(23):23863–23868

    PubMed  CAS  Google Scholar 

  • Molberg O, McAdam SN, Korner R, Quarsten H, Kristiansen C, Madsen L et al (1998) Tissue transglutaminase selectively modifies gliadin peptides that are recognized by gut-derived T cells in celiac disease. Nat Med 4(6):713–717

    PubMed  CAS  Google Scholar 

  • Mortensen SB, Sottrup-Jensen L, Hansen HF, Rider D, Petersen TE, Magnusson S (1981) Sequence location of a putative transglutaminase crosslinking site in human alpha 2-macroglobulin. FEBS Lett 129(2):314–317

    PubMed  CAS  Google Scholar 

  • Mosher DF, Schad PE (1979) Cross-linking of fibronectin to collagen by blood coagulation Factor XIIIa. J Clin Invest 64(3):781–787

    PubMed  CAS  Google Scholar 

  • Murthy SN, Wilson J, Zhang Y, Lorand L (1994) Residue Gln-30 of human erythrocyte anion transporter is a prime site for reaction with intrinsic transglutaminase. J Biol Chem 269(36):22907–22911

    PubMed  CAS  Google Scholar 

  • Murthy SN, Wilson JH, Lukas TJ, Kuret J, Lorand L (1998) Cross-linking sites of the human tau protein, probed by reactions with human transglutaminase. J Neurochem 71(6):2607–2614

    Article  PubMed  CAS  Google Scholar 

  • Murthy SN, Wilson JH, Lukas TJ, Veklich Y, Weisel JW, Lorand L (2000) Transglutaminase-catalyzed crosslinking of the Aalpha and gamma constituent chains in fibrinogen. Proc Natl Acad Sci USA 97(1):44–48

    PubMed  CAS  Google Scholar 

  • Mycek MJ, Clarke DD, Neidle A, Waelsch H (1959) Amine incorporation into insulin as catalyzed by transglutaminase. Arch Biochem Biophys 84:528–540

    PubMed  CAS  Google Scholar 

  • Nadeau OW, Traxler KW, Carlson GM (1998) Zero-length crosslinking of the beta subunit of phosphorylase kinase to the N-terminal half of its regulatory alpha subunit. Biochem Biophys Res Commun 251(2):637–641

    PubMed  CAS  Google Scholar 

  • Nakaoka H, Perez DM, Baek KJ, Das T, Husain A, Misono K et al. (1994) Gh: a GTP-binding protein with transglutaminase activity and receptor signaling function. Science 264(5165):1593–1596

    PubMed  CAS  Google Scholar 

  • Nemes Z Jr, Adany R, Balazs M, Boross P, Fesus L (1997) Identification of cytoplasmic actin as an abundant glutaminyl substrate for tissue transglutaminase in HL-60 and U937 cells undergoing apoptosis. J Biol Chem 272(33):20577–20583

    PubMed  CAS  Google Scholar 

  • Nemes Z, Marekov LN, Steinert PM (1999) Involucrin cross-linking by transglutaminase 1. Binding to membranes directs residue specificity. J Biol Chem 274(16):11013–11021

    PubMed  CAS  Google Scholar 

  • Nieuwenhuizen WF, Dekker HL, de Koning LJ, Groneveld T, de Koster CG, de Jong GA (2003) Modification of glutamine and lysine residues in holo and apo alpha-lactalbumin with microbial transglutaminase. J Agric Food Chem 51(24):7132–7139

    PubMed  CAS  Google Scholar 

  • Nieuwenhuizen WF, Dekker HL, Groneveld T, de Koster CG, de Jong GA (2004) Transglutaminase-mediated modification of glutamine and lysine residues in native bovine beta-lactoglobulin. Biotechnol Bioeng 85(3):248–258

    PubMed  CAS  Google Scholar 

  • Oliverio S, Amendola A, Di Sano F, Farrace MG, Fesus L, Nemes Z et al (1997) Tissue transglutaminase-dependent posttranslational modification of the retinoblastoma gene product in promonocytic cells undergoing apoptosis. Mol Cell Biol 17(10):6040–6048

    PubMed  CAS  Google Scholar 

  • Orban JM, Wilson LB, Kofroth JA, El-Kurdi MS, Maul TM, Vorp DA (2004) Crosslinking of collagen gels by transglutaminase. J Biomed Mater Res 68A(4):756–762

    CAS  Google Scholar 

  • Orru S, Ruoppolo M, Francese S, Vitagliano L, Marino G, Esposito C (2002) Identification of tissue transglutaminase-reactive lysine residues in glyceraldehyde-3-phosphate dehydrogenase. Protein Sci 11(1):137–146

    PubMed  CAS  Google Scholar 

  • Ota M, Sawa A, Nio N, Ariyoshi Y (1999) Enzymatic ligation for synthesis of single-chain analogue of monellin by transglutaminase. Biopolymers 50(2):193–200

    PubMed  CAS  Google Scholar 

  • Ouyang P (1999) Antibodies differentiate desmosome-form and nucleus-form pinin: evidence that pinin is a moonlighting protein with dual location at the desmosome and within the nucleus. Biochem Biophys Res Commun 263(1):192–200

    PubMed  CAS  Google Scholar 

  • Peng X, Zhang Y, Zhang H, Graner S, Williams JF, Levitt ML et al (1999) Interaction of tissue transglutaminase with nuclear transport protein importin-alpha3. FEBS Lett 446(1):35–39

    PubMed  CAS  Google Scholar 

  • Perez-Paya E, Thiaudiere E, Abad C, Dufourcq J (1991) Selective labelling of melittin with a fluorescent dansylcadaverine probe using guinea-pig liver transglutaminase. FEBS Lett 278(1):51–54

    PubMed  CAS  Google Scholar 

  • Peter A, Lilja H, Lundwall A, Malm J (1998) Semenogelin I and semenogelin II, the major gel-forming proteins in human semen, are substrates for transglutaminase. Eur J Biochem 252(2):216–221

    PubMed  CAS  Google Scholar 

  • Pincus JH, Waelsch H (1968a) The specificity of transglutaminase. I. Human hemoglobin as a substrate for the enzyme. Arch Biochem Biophys 126(1):34–43

    PubMed  CAS  Google Scholar 

  • Pincus JH, Waelsch H (1968b) The specificity of transglutaminase. II. Structural requirements of the amine substrate. Arch Biochem Biophys 126(1):44–52

    PubMed  CAS  Google Scholar 

  • Piper JL, Gray GM, Khosla C (2002) High selectivity of human tissue transglutaminase for immunoactive gliadin peptides: implications for celiac sprue. Biochemistry 41(1):386–393

    PubMed  CAS  Google Scholar 

  • Piredda L, Farrace MG, Lo Bello M, Malorni W, Melino G, Petruzzelli R et al (1999) Identification of ‘tissue’ transglutaminase binding proteins in neural cells committed to apoptosis. Faseb J 13(2):355–364

    PubMed  CAS  Google Scholar 

  • Porta R, Esposito C, Metafora S, Malorni A, Pucci P, Siciliano R et al (1991) Mass spectrometric identification of the amino donor and acceptor sites in a transglutaminase protein substrate secreted from rat seminal vesicles. Biochemistry 30(12):3114–3120

    PubMed  CAS  Google Scholar 

  • Prince CW, Dickie D, Krumdieck CL (1991) Osteopontin, a substrate for transglutaminase and factor XIII activity. Biochem Biophys Res Commun 177(3):1205–1210

    PubMed  CAS  Google Scholar 

  • Pucci P, Malorni A, Marino G, Metafora S, Esposito C, Porta R (1988) Beta-endorphin modification by transglutaminase in vitro: identification by FAB/MS of glutamine-11 and lysine-29 as acyl donor and acceptor sites. Biochem Biophys Res Commun 154(2):735–740

    PubMed  CAS  Google Scholar 

  • Rasmussen LK, Sorensen ES, Petersen TE, Gliemann J, Jensen PH (1994) Identification of glutamine and lysine residues in Alzheimer amyloid beta A4 peptide responsible for transglutaminase-catalysed homopolymerization and cross-linking to alpha 2 M receptor. FEBS Lett 338(2):161–166

    PubMed  CAS  Google Scholar 

  • Rasmussen LK, Ellgaard L, Jensen PH, Sorensen ES (1999) Localization of a single transglutaminase-reactive glutamine in the third domain of RAP, the alpha2-macroglobulin receptor-associated protein. J Protein Chem 18(1):69–73

    PubMed  CAS  Google Scholar 

  • Ritchie H, Robbie LA, Kinghorn S, Exley R, Booth NA (1999) Monocyte plasminogen activator inhibitor 2 (PAI-2) inhibits u-PA-mediated fibrin clot lysis and is cross-linked to fibrin. Thromb Haemost 81(1):96–103

    PubMed  CAS  Google Scholar 

  • Robinson NA, Eckert RL (1998) Identification of transglutaminase-reactive residues in S100A11. J Biol Chem 273(5):2721–2728

    PubMed  CAS  Google Scholar 

  • Robitaille K, Daviau A, Tucholski J, Johnson GV, Rancourt C, Blouin R (2004) Tissue transglutaminase triggers oligomerization and activation of dual leucine zipper-bearing kinase in calphostin C-treated cells to facilitate apoptosis. Cell Death Differ 11(5):542–549

    PubMed  CAS  Google Scholar 

  • Ruse M, Lambert A, Robinson N, Ryan D, Shon KJ, Eckert RL (2001) S100A7, S100A10, and S100A11 are transglutaminase substrates. Biochemistry 40(10):3167–3173

    PubMed  CAS  Google Scholar 

  • Safer D, Sosnick TR, Elzinga M (1997) Thymosin beta 4 binds actin in an extended conformation and contacts both the barbed and pointed ends. Biochemistry 36(19):5806–5816

    PubMed  CAS  Google Scholar 

  • Sakai K, Busby WH Jr, Clarke JB, Clemmons DR (2001) Tissue transglutaminase facilitates the polymerization of insulin-like growth factor-binding protein-1 (IGFBP-1) and leads to loss of IGFBP-1’s ability to inhibit insulin-like growth factor-I-stimulated protein synthesis. J Biol Chem 276(12):8740–8745

    PubMed  CAS  Google Scholar 

  • Sarvary A, Szucs S, Balogh I, Becsky A, Bardos H, Kavai M et al (2004) Possible role of factor XIII subunit A in Fcgamma and complement receptor-mediated phagocytosis. Cell Immunol 228(2):81–90

    PubMed  CAS  Google Scholar 

  • Sato H (2002) Enzymatic procedure for site-specific pegylation of proteins. Adv Drug Deliv Rev 54(4):487–504

    PubMed  CAS  Google Scholar 

  • Sato H, Yamada N, Shimba N, Takahara Y (2000) Unique substrate specificities of two adjacent glutamine residues in EAQQIVM for transglutaminase: identification and characterization of the reaction products by electrospray ionization tandem mass spectrometry. Anal Biochem 281(1):68–76

    PubMed  CAS  Google Scholar 

  • Sato H, Hayashi E, Yamada N, Yatagai M, Takahara Y (2001) Further studies on the site-specific protein modification by microbial transglutaminase. Bioconjug Chem 12(5):701–710

    PubMed  CAS  Google Scholar 

  • Schmidt G, Goehring UM, Schirmer J, Lerm M, Aktories K (1999) Identification of the C-terminal part of Bordetella dermonecrotic toxin as a transglutaminase for rho GTPases. J Biol Chem 274(45):31875–31881

    PubMed  CAS  Google Scholar 

  • Schrode J, Folk JE (1978) Transglutaminase-catalyzed cross-linking through diamines and polyamines. J Biol Chem 253(14):4837–4840

    PubMed  CAS  Google Scholar 

  • Seitz A, Schneider F, Pasternack R, Fuchsbauer HL, Hampp N (2001) Enzymatic cross-linking of purple membranes catalyzed by bacterial transglutaminase. Biomacromolecules 2(1):233–238

    PubMed  CAS  Google Scholar 

  • Simon M, Green H (1988) The glutamine residues reactive in transglutaminase-catalyzed cross-linking of involucrin. J Biol Chem 263(34):18093–18098

    PubMed  CAS  Google Scholar 

  • Singh US, Erickson JW, Cerione RA (1995) Identification and biochemical characterization of an 80 kilodalton GTP-binding/transglutaminase from rabbit liver nuclei. Biochemistry 34(48):15863–15871

    PubMed  CAS  Google Scholar 

  • Singh US, Kunar MT, Kao YL, Baker KM (2001) Role of transglutaminase II in retinoic acid-induced activation of RhoA-associated kinase-2. Embo J 20(10):2413–2423

    PubMed  CAS  Google Scholar 

  • Skorstengaard K, Halkier T, Hojrup P, Mosher D (1990) Sequence location of a putative transglutaminase cross-linking site in human vitronectin. FEBS Lett 262(2):269–274

    PubMed  CAS  Google Scholar 

  • Sorensen ES, Rasmussen LK, Moller L, Jensen PH, Hojrup P, Petersen TE (1994) Localization of transglutaminase-reactive glutamine residues in bovine osteopontin. Biochem J 304(Pt 1):13–16

    PubMed  CAS  Google Scholar 

  • Sugimura Y, Hosono M, Wada F, Yoshimura T, Maki M, Hitomi K (2006) Screening for the preferred substrate sequence of transglutaminase using a phage-displayed peptide library: identification of peptide substrates for TGASE 2 and Factor XIIIA. J Biol Chem 281(26):17699–17706

    PubMed  CAS  Google Scholar 

  • Szondy Z, Sarang Z, Molnar P, Nemeth T, Piacentini M, Mastroberardino PG et al (2003) Transglutaminase 2-/- mice reveal a phagocytosis-associated crosstalk between macrophages and apoptotic cells. Proc Natl Acad Sci USA 100(13):7812–7817

    PubMed  CAS  Google Scholar 

  • Taguchi S, Nishihama KI, Igi K, Ito K, Taira H, Motoki M et al (2000) Substrate specificity analysis of microbial transglutaminase using proteinaceous protease inhibitors as natural model substrates. J Biochem (Tokyo) 128(3):415–425

    CAS  Google Scholar 

  • Takashi R (1988) A novel actin label: a fluorescent probe at glutamine-41 and its consequences. Biochemistry 27:938–943

    PubMed  CAS  Google Scholar 

  • Takahashi M, Tezuka T, Katunuma N (1996) Filaggrin linker segment peptide and cystatin alpha are parts of a complex of the cornified envelope of epidermis. Arch Biochem Biophys 329(1):123–126

    PubMed  CAS  Google Scholar 

  • Taki M, Shiota M, Taira K (2004) Transglutaminase-mediated N- and C-terminal fluorescein labeling of a protein can support the native activity of the modified protein. Protein Eng Des Sel 17(2):119–126

    PubMed  CAS  Google Scholar 

  • Tamaki T, Aoki N (1982) Cross-linking of alpha 2-plasmin inhibitor to fibrin catalyzed by activated fibrin-stabilizing factor. J Biol Chem 257(24):14767–14772

    PubMed  CAS  Google Scholar 

  • Teshigawara K, Kannagi R, Noro N, Masuda T (1985) Possible involvement of transglutaminase in endocytosis and antigen presentation. Microbiol Immunol 29(8):737–750

    PubMed  CAS  Google Scholar 

  • Truong VD, Clare DA, Catignani GL, Swaisgood HE (2004) Cross-linking and rheological changes of whey proteins treated with microbial transglutaminase. J Agric Food Chem 52(5):1170–1176

    PubMed  CAS  Google Scholar 

  • Umar S, Malavasi F, Mehta K (1996) Post-translational modification of CD38 protein into a high molecular weight form alters its catalytic properties. J Biol Chem 271(27):15922–15927

    PubMed  CAS  Google Scholar 

  • Usui T, Takagi J, Saito Y (1993) Propolypeptide of von Willebrand factor serves as a substrate for factor XIIIa and is cross-linked to laminin. J Biol Chem 268(17):12311–12316

    PubMed  CAS  Google Scholar 

  • Vader LW, de Ru A, van der Wal Y, Kooy YM, Benckhuijsen W, Mearin ML et al (2002) Specificity of tissue transglutaminase explains cereal toxicity in celiac disease. J Exp Med 195(5):643–649

    PubMed  CAS  Google Scholar 

  • Valnickova Z, Enghild JJ (1998) Human procarboxypeptidase U, or thrombin-activable fibrinolysis inhibitor, is a substrate for transglutaminases. Evidence for transglutaminase-catalyzed cross-linking to fibrin. J Biol Chem 273(42):27220–27224

    CAS  Google Scholar 

  • Verderio E, Gaudry C, Gross S, Smith C, Downes S, Griffin M (1999) Regulation of cell surface tissue transglutaminase: effects on matrix storage of latent transforming growth factor-beta binding protein-1. J Histochem Cytochem 47(11):1417–1432

    PubMed  CAS  Google Scholar 

  • Violante V, Luongo A, Pepe I, Annunziata S, Gentile V (2001) Transglutaminase-dependent formation of protein aggregates as possible biochemical mechanism for polyglutamine diseases. Brain Res Bull 56(3–4):169–172

    PubMed  CAS  Google Scholar 

  • Walther DJ, Peter JU, Winter S, Holtje M, Paulmann N, Grohmann M et al (2003) Serotonylation of small GTPases is a signal transduction pathway that triggers platelet alpha-granule release. Cell 115(7):851–862

    PubMed  CAS  Google Scholar 

  • Zainelli GM, Ross CA, Troncoso JC, Fitzgerald JK, Muma NA (2004) Calmodulin regulates transglutaminase 2 cross-linking of huntingtin. J Neurosci 24(8):1954–1961

    PubMed  CAS  Google Scholar 

  • Zeeuwen PL, Van Vlijmen-Willems IM, Jansen BJ, Sotiropoulou G, Curfs JH, Meis JF et al (2001) Cystatin M/E expression is restricted to differentiated epidermal keratinocytes and sweat glands: a new skin-specific proteinase inhibitor that is a target for cross-linking by transglutaminase. J Invest Dermatol 116(5):693–701

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Angelo Facchiano or Francesco Facchiano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Facchiano, A., Facchiano, F. Transglutaminases and their substrates in biology and human diseases: 50 years of growing. Amino Acids 36, 599–614 (2009). https://doi.org/10.1007/s00726-008-0124-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-008-0124-8

Keywords

Navigation