Skip to main content
Log in

Using Chou’s pseudo amino acid composition to predict protein quaternary structure: a sequence-segmented PseAAC approach

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

In the protein universe, many proteins are composed of two or more polypeptide chains, generally referred to as subunits, which associate through noncovalent interactions and, occasionally, disulfide bonds to form protein quaternary structures. It has long been known that the functions of proteins are closely related to their quaternary structures; some examples include enzymes, hemoglobin, DNA polymerase, and ion channels. However, it is extremely labor-expensive and even impossible to quickly determine the structures of hundreds of thousands of protein sequences solely from experiments. Since the number of protein sequences entering databanks is increasing rapidly, it is highly desirable to develop computational methods for classifying the quaternary structures of proteins from their primary sequences. Since the concept of Chou’s pseudo amino acid composition (PseAAC) was introduced, a variety of approaches, such as residue conservation scores, von Neumann entropy, multiscale energy, autocorrelation function, moment descriptors, and cellular automata, have been utilized to formulate the PseAAC for predicting different attributes of proteins. Here, in a different approach, a sequence-segmented PseAAC is introduced to represent protein samples. Meanwhile, multiclass SVM classifier modules were adopted to classify protein quaternary structures. As a demonstration, the dataset constructed by Chou and Cai [(2003) Proteins 53:282–289] was adopted as a benchmark dataset. The overall jackknife success rates thus obtained were 88.2–89.1%, indicating that the new approach is quite promising for predicting protein quaternary structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Call ME, Schnell JR, Xu C, Lutz RA, Chou JJ, Wucherpfennig KW (2006) The structure of the zetazeta transmembrane dimer reveals features essential for its assembly with the T cell receptor. Cell 127:355–368

    Article  PubMed  CAS  Google Scholar 

  • Chen YL, Li QZ (2007a) Prediction of apoptosis protein subcellular location using improved hybrid approach and pseudo amino acid composition. J Theor Biol 248:377–381

    Article  PubMed  CAS  Google Scholar 

  • Chen YL, Li QZ (2007b) Prediction of the subcellular location of apoptosis proteins. J Theor Biol 245:775–783

    Article  PubMed  CAS  Google Scholar 

  • Chen HL, Skolnick J (2007) M-TASSER: an algorithm for protein quaternary structure prediction. Biophys J BioFAST. doi:10.1529/biophysj.107.114280

  • Chen H, Zhou HX (2005) Prediction of interface residues in protein–protein complexes by a consensus neural network method: test against NMR data. Proteins 61:21–35

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Tian YX, Zou XY, Cai PX, Mo JY (2006a) Using pseudo-amino acid composition and support vector machine to predict protein structural class. J Theor Biol 243:444–448

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Zhou X, Tian Y, Zou X, Cai P (2006b) Predicting protein structural class with pseudo-amino acid composition and support vector machine fusion network. Anal Biochem 357:116–121

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Liu H, Yang J, Chou KC (2007) Prediction of linear B-cell epitopes using amino acid pair antigenicity scale. Amino Acids 33:423–428

    Article  PubMed  CAS  Google Scholar 

  • Chou KC (1988) Review: low-frequency collective motion in biomacromolecules and its biological functions. Biophys Chem 30:3–48

    Article  PubMed  CAS  Google Scholar 

  • Chou KC (1989) Low-frequency resonance and cooperativity of hemoglobin. Trends Biochem Sci 14:212

    Article  PubMed  CAS  Google Scholar 

  • Chou KC (2001) Prediction of protein cellular attributes using pseudo amino acid composition. Proteins Struct Funct Genet 43:246–255 (Erratum: ibid., 2001, 44:60)

    Article  PubMed  CAS  Google Scholar 

  • Chou KC (2004a) Molecular therapeutic target for type-2 diabetes. J Proteome Res 3:1284–1288

    Article  PubMed  CAS  Google Scholar 

  • Chou KC (2004b) Review: Structural bioinformatics and its impact to biomedical science. Curr Med Chem 11:2105–2134

    PubMed  CAS  Google Scholar 

  • Chou KC (2004c) Insights from modelling three-dimensional structures of the human potassium and sodium channels. J Proteome Res 3:856–861

    Article  PubMed  CAS  Google Scholar 

  • Chou KC (2004d) Insights from modelling the 3D structure of the extracellular domain of alpha7 nicotinic acetylcholine receptor. Biochem Biophys Res Commun 319:433–438

    Article  PubMed  CAS  Google Scholar 

  • Chou KC (2004e) Modelling extracellular domains of GABA-A receptors: subtypes 1, 2, 3, and 5. Biochem Biophys Res Commun 316:636–642

    Article  PubMed  CAS  Google Scholar 

  • Chou KC (2005) Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes. Bioinformatics 21:10–19

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Cai YD (2003) Predicting protein quaternary structure by pseudo amino acid composition. Protein Struct Funct Genet 53:282–289

    Article  CAS  Google Scholar 

  • Chou KC, Shen HB (2007) Review: recent progresses in protein subcellular location prediction. Anal Biochem 370:1–16

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Shen HB (2008) Cell-PLoc: a package of web-servers for predicting subcellular localization of proteins in various organisms. Nat Protoc 3:153–162

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Zhang CT (1995) Review: prediction of protein structural classes. Crit Rev Biochem Mol Biol 30:275–349

    Article  PubMed  CAS  Google Scholar 

  • Diao Y, Ma D, Wen Z, Yin J, Xiang J, Li M (2008) Using pseudo amino acid composition to predict transmembrane regions in protein: cellular automata and Lempel–Ziv complexity. Amino Acids 34:111–117

    Article  PubMed  CAS  Google Scholar 

  • Ding YS, Zhang TL, Chou KC (2007) Prediction of protein structure classes with pseudo amino acid composition and fuzzy support vector machine network. Protein Pept Lett 14:811–815

    Article  PubMed  CAS  Google Scholar 

  • Doyle DA, Morais CJ, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77

    Article  PubMed  CAS  Google Scholar 

  • Du P, Li Y (2006) Prediction of protein submitochondria locations by hybridizing pseudo-amino acid composition with various physicochemical features of segmented sequence. BMC Bioinformatics 7:518

    Article  PubMed  Google Scholar 

  • Einstein E, Schachman HK (1989) Determining the roles of subunits in protein function. In: Creighton TE (ed) Protein function: a practical approach. IRL, London, pp 135–176

  • Fang Y, Guo Y, Feng Y, Li M (2008) Predicting DNA-binding proteins: approached from Chou’s pseudo amino acid composition and other specific sequence features. Amino Acids 34:103–109

    Article  PubMed  CAS  Google Scholar 

  • Gao Y, Shao SH, Xiao X, Ding YS, Huang YS, Huang ZD, Chou KC (2005) Using pseudo amino acid composition to predict protein subcellular location: approached with Lyapunov index, Bessel function, and Chebyshev filter. Amino Acids 28:373–376

    Article  PubMed  CAS  Google Scholar 

  • Garian R (2001) Prediction of quaternary structure from primary structure. Bioinformatics 17:551–556

    Article  PubMed  CAS  Google Scholar 

  • Guo YZ, Li M, Lu M, Wen Z, Wang K, Li G, Wu J (2006) Classifying G protein-coupled receptors and nuclear receptors based on protein power spectrum from fast Fourier transform. Amino Acids 30:397–402

    Article  PubMed  CAS  Google Scholar 

  • Hopp TP, Woods KR (1981) Prediction of protein antigenic determinants from amino acid sequences. Proc Natl Acad Sci USA 78:3824–3828

    Article  PubMed  CAS  Google Scholar 

  • Hsu C, Lin CJ (2002) A comparison of methods for multi-class support vector machines. IEEE Trans Neural Netw 13:415–425

    Article  PubMed  Google Scholar 

  • Inbar Y, Benyamini H, Nussinov R, Wolfson HJ (2005) Prediction of multimolecular assemblies by multiple docking. J Mol Biol 349(2):435–447

    Article  PubMed  CAS  Google Scholar 

  • Kim WK, Ison JC (2005) Survey of the geometric association of domain–domain interfaces. Proteins 61:1075–1088

    Article  PubMed  CAS  Google Scholar 

  • Klotz IM, Darnell DW, Langerman NR (1975) Quaternary structure of proteins. In: Neurath H, Hill RL (eds) The proteins, vol 1, 3rd edn. Academic, New York, pp 226–241

  • Kurgan LA, Stach W, Ruan J (2007) Novel scales based on hydrophobicity indices for secondary protein structure. J Theor Biol 248:354–366

    Article  PubMed  CAS  Google Scholar 

  • Li FM, Li QZ (2008) Using pseudo amino acid composition to predict protein subnuclear location with improved hybrid approach. Amino Acids 34:119–125

    Article  PubMed  CAS  Google Scholar 

  • Lin H, Li QZ (2007a) Predicting conotoxin superfamily and family by using pseudo amino acid composition and modified Mahalanobis discriminant. Biochem Biophys Res Commun 354:548–551

    Article  PubMed  CAS  Google Scholar 

  • Lin H, Li QZ (2007b) Using pseudo amino acid composition to predict protein structural class: approached by incorporating 400 dipeptide components. J Comput Chem 28:1463–1466

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Wang M, Chou KC (2005) Low-frequency Fourier spectrum for predicting membrane protein types. Biochem Biophys Res Commun 336:737–739

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Carbonell J, Gopalakrishnan V, Weigele P (2007a) Discriminative graphical models for protein quaternary structure motif detection. In: ICML2007 Workshop on Constrained Optimization and Structured Output Spaces, Corvallis, OR, 24 June 2007

  • Liu DQ, Liu H, Shen HB, Yang J, Chou KC (2007b) Predicting secretory protein signal sequence cleavage sites by fusing the marks of global alignments. Amino Acids 32:493–496

    Article  PubMed  CAS  Google Scholar 

  • Mondal S, Bhavna R, Mohan Babu R, Ramakumar S (2006) Pseudo amino acid composition and multi-class support vector machines approach for conotoxin superfamily classification. J Theor Biol 243:252–260

    Article  PubMed  CAS  Google Scholar 

  • Mundra P, Kumar M, Kumar KK, Jayaraman VK, Kulkarni BD (2007) Using pseudo amino acid composition to predict protein subnuclear localization: approached with PSSM. Pattern Recogn Lett 28:1610–1615

    Article  Google Scholar 

  • Nanni L, Lumini A (2008a) Combing ontologies and dipeptide composition for predicting DNA-binding proteins. Amino Acids. doi:10.1007/s00726-007-0018-1

  • Nanni L, Lumini A (2008b) Genetic programming for creating Chou’s pseudo amino acid based features for submitochondria localization. Amino Acids. doi:10.1007/s00726-007-0016-3

  • Niu B, Cai YD, Lu WC, Zheng GY, Chou KC (2006) Predicting protein structural class with AdaBoost learner. Protein Pept Lett 13:489–492

    Article  PubMed  CAS  Google Scholar 

  • Oxenoid K, Chou JJ (2005) The structure of phospholamban pentamer reveals a channel-like architecture in membranes. Proc Natl Acad Sci USA 102:10870–10875

    Article  PubMed  CAS  Google Scholar 

  • Pittner S, Kamarthi SV (1999) Feature extraction from wavelet coefficients for pattern recognition tasks. IEEE Trans Pattern Anal Mach Intell 21:83–88

    Article  Google Scholar 

  • Price NC (1994) Assembly of multi-subunit structure. In: Pain RH (ed) Mechanisms of protein folding. Oxford University Press, New York, pp 160–193

    Google Scholar 

  • Pu X, Guo J, Leung H, Lin Y (2007) Prediction of membrane protein types from sequences and position-specific scoring matrices. J Theor Biol 247:259–265

    Article  PubMed  CAS  Google Scholar 

  • Schnell JR, Chou JJ (2008) Structure and mechanism of the M2 proton channel of influenza A virus. Nature 451:591–595

    Article  PubMed  CAS  Google Scholar 

  • Shen HB, Chou KC (2007) Using ensemble classifier to identify membrane protein types. Amino Acids 32:483–488

    Article  PubMed  CAS  Google Scholar 

  • Shen HB, Chou KC (2008) PseAAC: a flexible web-server for generating various kinds of protein pseudo amino acid composition. Anal Biochem 373:386–388

    Article  PubMed  CAS  Google Scholar 

  • Shen HB, Yang J, Chou KC (2007) Euk-PLoc: an ensemble classifier for large-scale eukaryotic protein subcellular location prediction. Amino Acids 33:57–67

    Article  PubMed  CAS  Google Scholar 

  • Shi JY, Zhang SW, Liang Y, Pan Q (2006) Prediction of protein subcellular localizations using moment descriptors and support vector machine. In: Rajapakse JC et al. (eds) PRIB 2006, LNBI 4146. Springer, Berlin, pp 105–114

  • Shi JY, Zhang SW, Pan Q, Cheng Y-M, Xie J (2007a) Prediction of protein subcellular localization by support vector machines using multi-scale energy and pseudo amino acid composition. Amino Acids 33:69–74

    Article  PubMed  CAS  Google Scholar 

  • Shi JY, Zhang SW, Pan Q, Zhou GP (2007b) Using pseudo amino acid composition to predict protein subcellular location: approached with amino acid composition distribution. Amino Acids. doi:10.1007/s00726–007-0623-z

  • Sun XD, Huang RB (2006) Prediction of protein structural classes using support vector machines. Amino Acids 30:469–475

    Article  PubMed  CAS  Google Scholar 

  • Tan F, Feng X, Fang Z, Li M, Guo Y, Jiang L (2007) Prediction of mitochondrial proteins based on genetic algorithm—partial least squares and support vector machine. Amino Acids 33:669–675

    Article  PubMed  CAS  Google Scholar 

  • Tanford C (1962) Contribution of hydrophobic interactions to the stability of the globular conformation of proteins. J Am Chem Soc 84:4240–4274

    Article  CAS  Google Scholar 

  • Terry BF, Richard MC (1998) Determination of protein–protein interactions by matrix-assisted laser desorption/ionization mass spectrometry. J Mass Spectrom 33:697–704

    Article  Google Scholar 

  • Vapnik V (1998) Statistical learning theory. Wiley, New York

    Google Scholar 

  • Wang M, Yang J, Chou KC (2005) Using string kernel to predict signal peptide cleavage site based on subsite coupling model. Amino Acids 28:395–402 (Erratum, ibid. 2005, 29:301)

    Article  PubMed  CAS  Google Scholar 

  • Wang M, Yang J, Liu GP, Xu ZJ, Chou KC (2004) Weighted-support vector machines for predicting membrane protein types based on pseudo amino acid composition. Protein Eng Des Sel 17:509–516

    Article  PubMed  CAS  Google Scholar 

  • Wen Z, Li M, Li Y, Guo Y, Wang K (2007) Delaunay triangulation with partial least squares projection to latent structures: a model for G-protein coupled receptors classification and fast structure recognition. Amino Acids 32:277–283

    Article  PubMed  CAS  Google Scholar 

  • Xiao X, Shao S, Ding Y, Huang Z, Huang Y, Chou KC (2005) Using complexity measure factor to predict protein subcellular location. Amino Acids 28:57–61

    Article  PubMed  CAS  Google Scholar 

  • Xiao X, Shao SH, Ding YS, Huang ZD, Chou KC (2006) Using cellular automata images and pseudo amino acid composition to predict protein subcellular location. Amino Acids 30:49–54

    Article  PubMed  CAS  Google Scholar 

  • Yu XJ, Wang C, Li YX (2006) Classification of protein quaternary structure by function domain composition. BMC Bioinformatics 7:187

    Article  PubMed  Google Scholar 

  • Zhang TL, Ding YS (2007) Using pseudo amino acid composition and binary-tree support vector machines to predict protein structural classes. Amino Acids 33:623–629

    Article  PubMed  CAS  Google Scholar 

  • Zhang SW, Pan Q, Zhang HC, Zhang YL, Wang HY (2003) Classification of protein quaternary structure with support vector machine. Bioinformatics 19:2390–2396

    Article  PubMed  CAS  Google Scholar 

  • Zhang SW, Pan Q, Zhang HC, Shao ZC, Shi JY (2006a) Prediction protein homo-oligomer types by pseudo amino acid composition: approached with an improved feature extraction and naive Bayes feature fusion. Amino Acids 30:461–468

    Article  PubMed  CAS  Google Scholar 

  • Zhang T, Ding Y, Chou KC (2006b) Prediction of protein subcellular location using hydrophobic patterns of amino acid sequence. Comput Biol Chem 30:367–371

    Article  PubMed  CAS  Google Scholar 

  • Zhang SW, Zhang YL, Yang HF, Zhao CH, Pan Q (2007a) Using the concept of Chou’s pseudo amino acid composition to predict protein subcellular localization: an approach by incorporating evolutionary information and von Neumann entropies. Amino Acids. doi:10.1007/s00726-007-0010-9

  • Zhang SW, Zhang YL, Pan Q, Cheng YM, Chou KC (2007b) Estimating residue evolutionary conservation by introducing von Neumann entropy and a novel gap-treating approach. Amino Acids. doi:10.1007/s00726-007-0586-0

  • Zhou GP (1998) An intriguing controversy over protein structural class prediction. J Protein Chem 17:729–738

    Article  PubMed  CAS  Google Scholar 

  • Zhou GP, Assa-Munt N (2001) Some insights into protein structural class prediction. Proteins Struct Funct Genet 44:57–59

    Article  PubMed  CAS  Google Scholar 

  • Zhou GP, Cai YD (2006) Predicting protease types by hybridizing gene ontology and pseudo amino acid composition. Proteins Struct Funct Genet 63:681–684

    Article  PubMed  CAS  Google Scholar 

  • Zhou GP, Doctor K (2003) Subcellular location prediction of apoptosis proteins. Proteins Struct Funct Genet 50:44–48

    Article  PubMed  CAS  Google Scholar 

  • Zhou XB, Chen C, Li ZC, Zou XY (2007a) Improved prediction of subcellular location for apoptosis proteins by the dual-layer support vector machine. Amino Acids. doi:10.1007/s00726-007-0608-y

  • Zhou XB, Chen C, Li ZC, Zou XY (2007b) Using Chou’s amphiphilic pseudo-amino acid composition and support vector machine for prediction of enzyme subfamily classes. J Theor Biol 248:546–551

    Article  PubMed  CAS  Google Scholar 

  • Zhu HB, Domingues FS, Sommer I, Lengauer T (2006) NOXclass: prediction of protein–protein interaction types. BMC Bioinformatics 7:27

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Kuo-Chen Chou (Gordon Life Science Institute, San Diego, California, USA) for providing the datasets. This paper was supported in part by the National Natural Science Foundation of China (No. 60775012 and 60634030) and the Technological Innovation Foundation of Northwestern Polytechnical University (No. KC02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao-Wu Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, SW., Chen, W., Yang, F. et al. Using Chou’s pseudo amino acid composition to predict protein quaternary structure: a sequence-segmented PseAAC approach. Amino Acids 35, 591–598 (2008). https://doi.org/10.1007/s00726-008-0086-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-008-0086-x

Keywords

Navigation