Skip to main content
Log in

Non-covalent binding of azo compound to peptide chain: interactions of biebrich scarlet and naphthochrome green with four model proteins

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

We studied the non-specific interactions of two azo compounds: biebrich scarlet (BS) and naphthochrome green (NG), with four model proteins: bovine serum albumin, ovalbumin, poly-l-lysine and hemoglobin by UV-VIS spectrometry, fluorophotometry and circular dichroism melting technique. The optimal acidities of NG and BS for binding to proteins correspond to the physiological pHs of skin and gastro tissues. The saturation binding numbers of BS and NG on peptide chains were determined and the effects of electrolytes and temperature were investigated. These interactions were fitted by the Temkin absorption model and their thermodynamic parameters were calculated. The different bindings of BS and NG to proteins were compared from their molecular structures. We inferred that an ion-pair electrostatic interaction first fixes azo compounds to basic amino acid residues and subsequent binding involves the collective action of other non-covalent bonds: hydrogen bond, van der Waals force, and hydrophobic interaction. This combination of bonds caused a change of secondary conformation of protein from β-sheet to helix and the possible process was illustrated. The potential protein toxicity resulting from such a non-specific binding was analyzed. Besides, the interaction of BS with peptide chains was applied to protein assay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Behera GB, Mishra BK, Behera PK, Panda M (1999) Fluorescent probes for structural and distance effect studies in micelles, reversed micelles and micromulsions. Adv Colloid Interface 82:1–42

    Article  CAS  Google Scholar 

  • Binkowski BF, Miller RA, Belshaw PJ (2005) Ligand-regulated peptides: a general approach for modulating protein-peptide interactions with small molecules. Chem Biol 12:847–855

    Article  PubMed  CAS  Google Scholar 

  • Brazeau BJ, Johnson BJ, Wilmot CM (2004) Copper-containing amine oxidases, Biogenesis and catalysis: a structural perspective. Arch Biochem Biophys 428:22–31

    Article  PubMed  CAS  Google Scholar 

  • Cui FL, Fan J, Li W, Fan YC, Hu ZD (2004) Fluorescence spectroscopy studies on 5-aminosalicylic acid and Zin 5-aminosalylicylate interaction with human serum albumin. J Pharm Biomed Anal 34:189–197

    Article  PubMed  CAS  Google Scholar 

  • Dockal M, Carter DC, Rüker F (2000) Conformational transitions of the three recombinant domains of human serum albumin depending on pH. J Biol Chem 275:3042–3050

    Article  PubMed  CAS  Google Scholar 

  • Fazekas GS, Webster RG, Datyner A (1963) Two new staining procedures for quantitative estimation of proteins on electrophoretic strips. Biochim Biophys Acta 1:377–391

    Google Scholar 

  • Futaki S, Zhang Y, Kiwada T, Nakase I, Yagami T, Oiki S, Sugiura Y (2004) Gramicidin-based channel systems for the detection of protein–ligand interaction. Bioorg Med Chem 12:1343–1350

    Article  PubMed  CAS  Google Scholar 

  • Gao HW, Zhao JF (2003) Interaction of spectral probe with biomacromolecule: satranin T-nucleic acid assembly. J Trace Microprob T 21:615–625

    Article  CAS  Google Scholar 

  • Gao H, Wang YN, Fan YG, Ma JB (2006) Interactions of modified mono- and bis-β-cyclodextrins with bovine serum albumin. Bioorg Med Chem 14:131–137

    Article  PubMed  CAS  Google Scholar 

  • Gao HW, Zhao JF, Yang QZ, Liu XH, Chen L, Pan LT (2006) Non-covalent Interaction of 2′, 4′, 5′, 7′-tetrabromo-4, 5, 6, 7-tetrachlorofluorescein with proteins and its application. Proteomics 6:5140–5151

    Article  PubMed  CAS  Google Scholar 

  • Hasche AA, Voss C (2005) Immobilisation of a repressor protein for binding of plasmid DNA. J Chromatogr A 1080:76–82

    Article  PubMed  CAS  Google Scholar 

  • Hasler JA (1999) Pharmacogenetics of cytochromes P450. Mol Aspects Med 20:12–24

    Article  PubMed  CAS  Google Scholar 

  • Hoare SRJ, Sullivan SK, Fan J, Khongsaly K, Grigoriadis DE (2005) Peptide ligand binding properties of the corticotropin-releasing factor (CRF) type 2 receptor: pharmacology of endogenously expressed receptors, G-protein-coupling sensitivity and determinants of CRF2 receptor selectivity. Peptide 26:457–470

    Article  CAS  Google Scholar 

  • Jeyaprabha C, Sathiyanarayanan S, Phani KLN, Venkatachari G (2005) Influence of poly(aminoquinone) on corrosion inhibition of iron in acid media. Appl Surf Sci 252:966–975

    Article  CAS  Google Scholar 

  • Lee CF, Allen MD, Bycroft M, Wong KB (2005) Electrostatic interactions contribute to reduced heat capacity change of unfolding in a thermophilic ribosomal protein l30e. J Mol Biol 348:419–431

    Article  PubMed  CAS  Google Scholar 

  • Liang ZQ, Wang CX, Yang JX, Gao HW, Tian YP, Tao XT, Jiang MH (2007) A highly selective colorimetric chemosensor for detecting the respective amounts of iron(II) and iron(III) ions in water. New J Chem 31:906–910

    Article  CAS  Google Scholar 

  • Liao ZY, Thibaut L, Jobson A, Pommier Y (2006) Inhibition of human tyrosyl-DNA phosphodiesterase by aminoglycoside antibiotics and ribosome inhibitors. Mol Pharmacol 70:366–372

    PubMed  CAS  Google Scholar 

  • Lopez JM, Imperial S, Valderrama R, Navapro S (1993) An improved bradford protein assay for collagen proteins. Clin Chim Acta 220:91–100

    Article  PubMed  CAS  Google Scholar 

  • Marolia KZ, D’Souza SF (1999) Enhancement in the lysozyme activity of the hen egg white foam matrix by cross-linking in the presence of N-acetyl glucosamine. J Biochem Biophys Methods 39:115–117

    Article  PubMed  CAS  Google Scholar 

  • Nelson TJ, Backlund PS, Yergey A L, Alkon DL (2002) Isolation of protein subpopulations undergoing protein–protein interactions. Mol Cell Proteomics 1:253–259

    Article  PubMed  CAS  Google Scholar 

  • Patrick GL (1995) An introduction to medicinal chemistry. Oxford University Press, New York, pp 78–80

    Google Scholar 

  • Pelaprat D (2006) Interactions between neurotensin receptors and G proteins. Peptides 27:2476–2487

    Article  PubMed  CAS  Google Scholar 

  • Piekarska B, Skowronek M, Rybarska J, Stopa B, Roterman I, Konieczny L (1996) Congo red-stabilized. intermediates in the λ light chain transition from native to molten state. Biochimie 78:183–189

    Article  PubMed  CAS  Google Scholar 

  • Pitzurra L, Marconi P, Bistoni F, Blasi E (1989) Selective inhibition of cytokine-induced lysozyme activity by tetanus toxin in the GG2EE macrophage cell line. Infect Immun 57:2452–2456

    PubMed  CAS  Google Scholar 

  • Pula G, Crosby D, Baker J, Poole AW (2005) Functional interaction of protein kinase C alpha with the tyrosine kinases Syk and Src in human platelets. J Biol Chem 280:7194–7205

    Article  PubMed  CAS  Google Scholar 

  • Quinn SJ, Kifor O, Trivedi S, Diaz R, Vassilev P, Brown E (1998) Sodium and ionic strength sensing by the calcium receptor. J Biol Chem 273:19579–19586

    Article  PubMed  CAS  Google Scholar 

  • Wang XX, Hu ZP, Chan SY, Zhou SF (2006) Monitor drug–protein interaction. Clin Chim Acta 361:9–29

    Google Scholar 

  • Yi PG, Yu QS, Shang ZC, Guo M (2003) Study on the interaction between chlortetracycline and bovine serum albumin. Chin J Chem Phys 16:420–425

    CAS  Google Scholar 

Download references

Acknowledgments

The authors sincerely thank the Shanghai Fundamental Research Project (No. 04JC14072) and the Natural Science Foundation of China (No. 20477030) for financially supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Wen Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, HW., Liu, XH., Qiu, Z. et al. Non-covalent binding of azo compound to peptide chain: interactions of biebrich scarlet and naphthochrome green with four model proteins. Amino Acids 36, 251–260 (2009). https://doi.org/10.1007/s00726-008-0058-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-008-0058-1

Keywords

Navigation