Skip to main content
Log in

Searching distant homologs of the regulatory ACT domain in phenylalanine hydroxylase

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

High sequence divergence, evolutionary mobility, and superfold topology characterize the ACT domain. Frequently found in multidomain proteins, these domains induce allosteric effects by binding a regulatory ligand usually to an ACT domain dimer interface. In mammalian phenylalanine hydroxylase (PAH), no contacts are formed between ACT domains, and the domain promotes an allosteric effect despite the apparent lack of ligand binding. The increased functional scenario of this abundant domain encouraged us to search for distant homologs, aiming to enhance the understanding of the ACT domain in general and the ACT domain of PAH in particular. The PDB was searched using the FATCAT server with the ACT domain of PAH as a query. The hits that were confirmed by the SSAP algorithm were divided into known ACT domains (KADs) and potential ACT domains (PADs). The FATCAT/SSAP procedure recognized most of the established KADs, as well 18 so far unrecognized non-redundant PADs with extremely low sequence identities and high divergence in functionality and oligomerization. However, analysis of the structural similarity provides remarkable clustering of the proteins according to similarities in ligand binding. Despite enormous sequence divergence and high functional variability, there is a common regulatory theme among these domains. The results reveal the close relationships of the ACT domain of PAH with amino acid binding and metallobinding ACT domains and with acylphosphatase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AAAH:

Aromatic amino acid hydroxylase

ACYP:

Acylphosphatase

AHAS:

Acetoacetate synthase isozyme III small subuint

AK:

Aspartokinase

ALY:

Transcriptional coactivator

ASR:

Ancestral sequence reconstruction

Atx1:

Metallochaperone

CCS:

Metallochaperone of superoxide dismutase

CE:

Combinatorial extension

CutA1:

Periplasmic divalent cation tolerance protein

Duf190:

Domain unknown function

GCVR:

Glycine cleavage transcriptional repressor

HisG_C:

ATP phophoribosyl transferase

KADs:

Known ACT domains

LPRA:

Leucine-responsive regulatory protein A

MSCS:

Small-conductance mechanosensitive channel

NikR:

Nickel binding regulatory protein

PADs:

Potential ACT domains

PAH:

Phenylalanine hydroxylase

PheA:

Prephenate dehydratase

PII A–B:

P-II-like signaling protein, nitrogen regulatory protein A–B

RMSD:

Root mean square deviation

Rpia:

Ribose-5-phosphate isomerase

SGUF 1–7:

Structural genomics target with unknown function 1–7

SMBD:

Small molecule binding domain

S6 A–B:

30S ribosomal protein S6 A–B

TD:

Threonine deaminase

TH:

Tyrosine hydroxylase

TPH:

Tryptophan hydroxylase

VAO:

Vanillyl-alcohol oxidase

V-ATPase:

Head domain of subunit C

Znta:

Zinc, (lead, cadmium, and mercury) transporting ATPase

3-PGDH:

d-3-Phosphoglycerate dehydrogenase

References

  • Agalarov SC, Sridhar Prasad G, Funke PM, Stout CD, Williamson JR (2000) Structure of the S15,S6,S18-rRNA complex: assembly of the 30S ribosome central domain. Science 288:107–113

    Article  PubMed  CAS  Google Scholar 

  • Anantharaman V, Koonin EV, Aravind L (2001) Regulatory potential, phyletic distribution and evolution of ancient, intracellular small-molecule-binding domains. J Mol Biol 307:1271–1292

    Article  PubMed  CAS  Google Scholar 

  • Aravind L, Koonin EV (1999) Gleaning non-trivial structural, functional and evolutionary information about proteins by iterative database searches. J Mol Biol 287:1023–1040

    Article  PubMed  CAS  Google Scholar 

  • Arnesano F, Banci L, Benvenuti M, Bertini I, Calderone V, Mangani S, Viezzoli MS (2003) The evolutionarily conserved trimeric structure of CutA1 proteins suggests a role in signal transduction. J Biol Chem 278:45999–46006

    Article  PubMed  CAS  Google Scholar 

  • Banci L, Bertini I, Ciofi-Baffoni S, Finney LA, Outten CE, O’Halloran TV (2002) A new zinc-protein coordination site in intracellular metal trafficking: solution structure of the Apo and Zn(II) forms of ZntA(46–118). J Mol Biol 323:883–897

    Article  PubMed  CAS  Google Scholar 

  • Bass RB, Strop P, Barclay M, Rees DC (2002) Crystal structure of Escherichia coli MscS, a voltage-modulated and mechanosensitive channel. Science 298:1582–1587

    Article  PubMed  CAS  Google Scholar 

  • Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, Khanna A, Marshall M, Moxon S, Sonnhammer EL, Studholme DJ, Yeats C, Eddy SR (2004) The Pfam protein families database. Nucleic Acids Res 32: D138–D141

    Article  PubMed  CAS  Google Scholar 

  • Bell JK, Grant GA, Banaszak LJ (2004) Multiconformational states in phosphoglycerate dehydrogenase. Biochemistry 43:3450–3458

    Article  PubMed  CAS  Google Scholar 

  • Bjorklund AK, Ekman D, Light S, Frey-Skott J, Elofsson A (2005) Domain rearrangements in protein evolution. J Mol Biol 353:911–923

    Article  PubMed  Google Scholar 

  • Bond JP, Francklyn C (2000) Proteobacterial histidine-biosynthetic pathways are paraphyletic. J Mol Evol 50:339–347

    PubMed  CAS  Google Scholar 

  • Chipman DM, Shaanan B (2001) The ACT domain family. Curr Opin Struct Biol 11:694–700

    Article  PubMed  CAS  Google Scholar 

  • Chivers PT, Tahirov TH (2005) Structure of Pyrococcus horikoshii NikR: nickel sensing and implications for the regulation of DNA recognition. J Mol Biol 348:597–607

    Article  PubMed  CAS  Google Scholar 

  • Cho Y, Sharma V, Sacchettini JC (2003) Crystal structure of ATP phosphoribosyltransferase from Mycobacterium tuberculosis. J Biol Chem 278:8333–8339

    Article  PubMed  CAS  Google Scholar 

  • Corazza A, Rosano C, Pagano K, Alverdi V, Esposito G, Capanni C, Bemporad F, Plakoutsi G, Stefani M, Chiti F, Zuccotti S, Bolognesi M, Viglino P (2006) Structure, conformational stability, and enzymatic properties of acylphosphatase from the hyperthermophile Sulfolobus solfataricus. Proteins 62:64–79

    Article  PubMed  CAS  Google Scholar 

  • DeLano WL (2002) The PyMOL molecular graphics system. DeLano Scientific, Palo Alto. http://www.pymol.org

  • Devedjiev Y, Surendranath Y, Derewenda U, Gabrys A, Cooper DR, Zhang RG, Lezondra L, Joachimiak A, Derewenda ZS (2004) The structure and ligand binding properties of the B. subtilis YkoF gene product, a member of a novel family of thiamin/HMP-binding proteins. J Mol Biol 343:395–406

    Article  PubMed  CAS  Google Scholar 

  • Dey S, Grant GA, Sacchettini JC (2005) Crystal structure of Mycobacterium tuberculosis D-3-phosphoglycerate dehydrogenase: extreme asymmetry in a tetramer of identical subunits. J Biol Chem 280:14892–14899

    Article  PubMed  CAS  Google Scholar 

  • Drory O, Frolow F, Nelson N (2004) Crystal structure of yeast V-ATPase subunit C reveals its stator function. EMBO Rep 5:1148–1152

    Article  PubMed  CAS  Google Scholar 

  • Ettema TJ, Brinkman AB, Tani TH, Rafferty JB, Van Der Oost J (2002) A novel ligand-binding domain involved in regulation of amino acid metabolism in prokaryotes. J Biol Chem 277:37464–37468

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1989) PHYLIP: phylogeny inference package (Version 3.2). Cladistics 5:164–166

    Google Scholar 

  • Fitzpatrick PF (2003) Mechanism of aromatic amino acid hydroxylation. Biochemistry 42:14083–14091

    Article  PubMed  CAS  Google Scholar 

  • Flatmark T, Stevens RC (1999) Structural insight into the aromatic amino acid hydroxylases and their disease-related mutant forms. Chem Rev 99:2137–2160

    Article  PubMed  CAS  Google Scholar 

  • Gallagher DT, Gilliland GL, Xiao G, Zondlo J, Fisher KE, Chinchilla D, Eisenstein E (1998) Structure and control of pyridoxal phosphate dependent allosteric threonine deaminase. Structure 6:465–475

    Article  PubMed  CAS  Google Scholar 

  • Gille C, Frommel C (2001) STRAP: editor for STRuctural Alignments of Proteins. Bioinformatics 17:377–378

    Article  PubMed  CAS  Google Scholar 

  • Gjetting T, Petersen M, Guldberg P, Guttler F (2001) Missense mutations in the N-terminal domain of human phenylalanine hydroxylase interfere with binding of regulatory phenylalanine. Am J Hum Genet 68:1353–1360

    Article  PubMed  CAS  Google Scholar 

  • Grant GA (2006) The ACT domain: a small molecule binding domain and its role as a common regulatory element. J Biol Chem 281:33825–33829

    Article  PubMed  CAS  Google Scholar 

  • Heil G, Stauffer LT, Stauffer GV (2002) Glycine binds the transcriptional accessory protein GcvR to disrupt a GcvA/GcvR interaction and allow GcvA-mediated activation of the Escherichia coli gcvTHP operon. Microbiology 148:2203–2214

    PubMed  CAS  Google Scholar 

  • Kamberov ES, Atkinson MR, Feng J, Chandran P, Ninfa AJ (1994) Sensory components controlling bacterial nitrogen assimilation. Cell Mol Biol Res 40:175–191

    PubMed  CAS  Google Scholar 

  • Kamberov ES, Atkinson MR, Ninfa AJ (1995) The Escherichia coli PII signal transduction protein is activated upon binding 2-ketoglutarate and ATP. J Biol Chem 270:17797–17807

    Article  PubMed  CAS  Google Scholar 

  • Kaplun A, Vyazmensky M, Zherdev Y, Belenky I, Slutzker A, Mendel S, Barak Z, Chipman DM, Shaanan B (2006) Structure of the regulatory subunit of acetohydroxyacid synthase isozyme III from Escherichia coli. J Mol Biol 357:951–963

    Article  PubMed  CAS  Google Scholar 

  • Kiel C, Serrano L (2006) The ubiquitin domain superfold: structure-based sequence alignments and characterization of binding epitopes. J Mol Biol 355:821–844

    Article  PubMed  CAS  Google Scholar 

  • Kobe B, Jennings IG, House CM, Michell BJ, Goodwill KE, Santarsiero BD, Stevens RC, Cotton RG, Kemp BE (1999) Structural basis of autoregulation of phenylalanine hydroxylase. Nat Struct Biol 6:442–448

    Article  PubMed  CAS  Google Scholar 

  • Konagurthu AS, Whisstock JC, Stuckey PJ, Lesk AM (2006) MUSTANG: a multiple structural alignment algorithm. Proteins 64:559–574

    Article  PubMed  CAS  Google Scholar 

  • Kozlov G, Elias D, Semesi A, Yee A, Cygler M, Gehring K (2004) Structural similarity of YbeD protein from Escherichia coli to allosteric regulatory domains. J Bacteriol 186:8083–8088

    Article  PubMed  CAS  Google Scholar 

  • Lamb AL, Torres AS, O’Halloran TV, Rosenzweig AC (2001) Heterodimeric structure of superoxide dismutase in complex with its metallochaperone. Nat Struct Biol 8:751–755

    Article  PubMed  CAS  Google Scholar 

  • Leonard PM, Smits SH, Sedelnikova SE, Brinkman AB, de Vos WM, van der Oost J, Rice DW, Rafferty JB (2001) Crystal structure of the Lrp-like transcriptional regulator from the archaeon Pyrococcus furiosus. Embo J 20:990–997

    Article  PubMed  CAS  Google Scholar 

  • Liberles JS, Thorolfsson M, Martinez A (2005) Allosteric mechanisms in ACT domain containing enzymes involved in amino acid metabolism. Amino Acids 28:1–12

    Article  PubMed  CAS  Google Scholar 

  • Lindberg MO, Haglund E, Hubner IA, Shakhnovich EI, Oliveberg M (2006) Identification of the minimal protein-folding nucleus through loop-entropy perturbations. Proc Natl Acad Sci USA 103:4083–4088

    Article  PubMed  CAS  Google Scholar 

  • Martinez A, Olafsdottir S, Flatmark T (1993) The cooperative binding of phenylalanine to phenylalanine 4-monooxygenase studied by 1H-NMR paramagnetic relaxation: changes in water accessibility to the iron at the active site upon substrate binding. Eur J Biochem 211:259–266

    Article  PubMed  CAS  Google Scholar 

  • Mas-Droux C, Curien G, Robert-Genthon M, Laurencin M, Ferrer JL, Dumas R (2006) A novel organization of ACT domains in allosteric enzymes revealed by the crystal structure of Arabidopsis aspartate kinase. Plant Cell 18:1681–1692

    Article  PubMed  CAS  Google Scholar 

  • Mattevi A, Fraaije MW, Mozzarelli A, Olivi L, Coda A, van Berkel WJ (1997) Crystal structures and inhibitor binding in the octameric flavoenzyme vanillyl-alcohol oxidase: the shape of the active-site cavity controls substrate specificity. Structure 5:907–920

    Article  PubMed  CAS  Google Scholar 

  • Mirny L, Shakhnovich E (2001) Evolutionary conservation of the folding nucleus. J Mol Biol 308:123–129

    Article  PubMed  CAS  Google Scholar 

  • Miyazono K, Sawano Y, Tanokura M (2005) Crystal structure and structural stability of acylphosphatase from hyperthermophilic archaeon Pyrococcus horikoshii OT3. Proteins 61:196–205

    Article  PubMed  CAS  Google Scholar 

  • Murzin AG, Brenner SE, Hubbard T, Chothia C (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247:536–540

    Article  PubMed  CAS  Google Scholar 

  • Olofsson M, Hansson S, Hedberg L, Logan DT, Oliveberg M (2007) Folding of S6 structures with divergent amino acid composition: pathway flexibility within partly overlapping foldons. J Mol Biol 365:237–248

    Article  PubMed  CAS  Google Scholar 

  • Orengo CA, Thornton JM (2005) Protein families and their evolution: a structural perspective. Annu Rev Biochem 74:867–900

    Article  PubMed  CAS  Google Scholar 

  • Orengo CA, Jones DT, Thornton JM (1994) Protein superfamilies and domain superfolds. Nature 372:631–634

    Article  PubMed  CAS  Google Scholar 

  • Orengo CA, Michie AD, Jones S, Jones DT, Swindells MB, Thornton JM (1997) CATH: a hierarchic classification of protein domain structures. Structure 5:1093–1108

    Article  PubMed  CAS  Google Scholar 

  • Otzen DE, Kristensen O, Oliveberg M (2000) Designed protein tetramer zipped together with a hydrophobic Alzheimer homology: a structural clue to amyloid assembly. Proc Natl Acad Sci USA 97:9907–9912

    Article  PubMed  CAS  Google Scholar 

  • Page RDM (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  • Parrini C, Taddei N, Ramazzotti M, Degl’Innocenti D, Ramponi G, Dobson CM, Chiti F (2005) Glycine residues appear to be evolutionarily conserved for their ability to inhibit aggregation. Structure (Camb) 13:1143–1151

    Article  CAS  Google Scholar 

  • Pearl FM, Lee D, Bray JE, Sillitoe I, Todd AE, Harrison AP, Thornton JM, Orengo CA (2000) Assigning genomic sequences to CATH. Nucleic Acids Res 28:277–282

    Article  PubMed  CAS  Google Scholar 

  • Pearl F, Todd A, Sillitoe I, Dibley M, Redfern O, Lewis T, Bennett C, Marsden R, Grant A, Lee D et al (2005) The CATH Domain Structure Database and related resources Gene3D and DHS provide comprehensive domain family information for genome analysis. Nucleic Acids Res 33:D247–251

    Article  PubMed  CAS  Google Scholar 

  • Perez-Alvarado GC, Martinez-Yamout M, Allen MM, Grosschedl R, Dyson HJ, Wright PE (2003) Structure of the nuclear factor ALY: insights into post-transcriptional regulatory and mRNA nuclear export processes. Biochemistry 42:7348–7357

    Article  PubMed  CAS  Google Scholar 

  • Pohnert G, Zhang S, Husain A, Wilson DB, Ganem B (1999) Regulation of phenylalanine biosynthesis: studies on the mechanism of phenylalanine binding and feedback inhibition in the Escherichia coli P-protein. Biochemistry 38:12212–12217

    Article  PubMed  CAS  Google Scholar 

  • Qi Y, Grishin NV (2005) Structural classification of thioredoxin-like fold proteins. Proteins 58:376–388

    Article  PubMed  CAS  Google Scholar 

  • Rosano C, Zuccotti S, Bucciantini M, Stefani M, Ramponi G, Bolognesi M (2002) Crystal structure and anion binding in the prokaryotic hydrogenase maturation factor HypF acylphosphatase-like domain. J Mol Biol 321:785–796

    Article  PubMed  CAS  Google Scholar 

  • Rosenzweig AC, Huffman DL, Hou MY, Wernimont AK, Pufahl RA, O’Halloran TV (1999) Crystal structure of the Atx1 metallochaperone protein at 1.02 A resolution. Structure 7:605–617

    Article  PubMed  CAS  Google Scholar 

  • Schreiter ER, Sintchak MD, Guo Y, Chivers PT, Sauer RT, Drennan CL (2003) Crystal structure of the nickel-responsive transcription factor NikR. Nat Struct Biol 10:794–799

    Article  PubMed  CAS  Google Scholar 

  • Schuller DJ, Grant GA, Banaszak LJ (1995) The allosteric ligand site in the Vmax-type cooperative enzyme phosphoglycerate dehydrogenase. Nat Struct Biol 2:69–76

    Article  PubMed  CAS  Google Scholar 

  • Schwarzenbacher R, von Delft F, Abdubek P, Ambing E, Biorac T, Brinen LS, Canaves JM, Cambell J, Chiu HJ, Dai X, Deacon AM, DiDonato M, Elsliger MA, Eshagi S, Floyd R, Godzik A, Grittini C, Grzechnik SK, Hampton E, Jaroszewski L, Karlak C, Klock HE, Koesema E, Kovarik JS, Kreusch A, Kuhn P, Lesley SA, Levin I, McMullan D, McPhillips TM, Miller MD, Morse A, Moy K, Ouyang J, Page R, Quijano K, Robb A, Spraggon G, Stevens RC, van den Bedem H, Velasquez J, Vincent J, Wang X, West B, Wolf G, Xu Q, Hodgson KO, Wooley J, Wilson IA (2004) Crystal structure of a putative PII-like signaling protein (TM0021) from Thermotoga maritima at 2.5 A resolution. Proteins 54:810–813

    Article  PubMed  CAS  Google Scholar 

  • Shakhnovich BE, Dokholyan NV, DeLisi C, Shakhnovich EI (2003) Functional fingerprints of folds: evidence for correlated structure-function evolution. J Mol Biol 326:1–9

    Article  PubMed  CAS  Google Scholar 

  • Shiman R (1980) Relationship between the substrate activation site and catalytic site of phenylalanine hydroxylase. J Biol Chem 255:10029–10032

    PubMed  CAS  Google Scholar 

  • Shiman R, Xia T, Hill MA, Gray DW (1994) Regulation of rat liver phenylalanine hydroxylase. II: Substrate binding and the role of activation in the control of enzymatic activity. J Biol Chem 269:24647–24656

    PubMed  CAS  Google Scholar 

  • Shindyalov IN, Bourne PE (1998) Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Eng 11:739–747

    Article  PubMed  CAS  Google Scholar 

  • Shindyalov IN, Bourne PE (2001) A database and tools for 3-D protein structure comparison and alignment using the combinatorial extension (CE) algorithm. Nucleic Acids Res 29:228–229

    Article  PubMed  CAS  Google Scholar 

  • Stefani M, Taddei N, Ramponi G (1997) Insights into acylphosphatase structure and catalytic mechanism. Cell Mol Life Sci 53:141–151

    Article  PubMed  CAS  Google Scholar 

  • Tanaka Y, Tsumoto K, Nakanishi T, Yasutake Y, Sakai N, Yao M, Tanaka I, Kumagai I (2004) Structural implications for heavy metal-induced reversible assembly and aggregation of a protein: the case of Pyrococcus horikoshii CutA. FEBS Lett 556:167–174

    Article  PubMed  CAS  Google Scholar 

  • Taylor WR, Orengo CA (1989) Protein structure alignment. J Mol Biol 208:1–22

    Article  PubMed  CAS  Google Scholar 

  • Thompson JR, Bell JK, Bratt J, Grant GA, Banaszak LJ (2005) Vmax regulation through domain and subunit changes: the active form of phosphoglycerate dehydrogenase. Biochemistry 44:5763–5773

    Article  PubMed  CAS  Google Scholar 

  • Thorolfsson M, Ibarra-Molero B, Fojan P, Petersen SB, Sanchez-Ruiz JM, Martinez A (2002) l-Phenylalanine binding and domain organization in human phenylalanine hydroxylase: a differential scanning calorimetry study. Biochemistry 41:7573–7585

    Article  PubMed  CAS  Google Scholar 

  • Ye Y, Godzik A (2003) Flexible structure alignment by chaining aligned fragment pairs allowing twists. Bioinformatics 19(Suppl 2):II246–II255

    PubMed  Google Scholar 

  • Ye Y, Godzik A (2004) FATCAT: a web server for flexible structure comparison and structure similarity searching. Nucleic Acids Res 32:W582–W585

    Article  PubMed  CAS  Google Scholar 

  • Ye Y, Godzik A (2005) Multiple flexible structure alignment using partial order graphs. Bioinformatics 21:2362–2369

    Article  PubMed  CAS  Google Scholar 

  • Zhang R, Andersson CE, Savchenko A, Skarina T, Evdokimova E, Beasley S, Arrowsmith CH, Edwards AM, Joachimiak A, Mowbray SL (2003) Structure of Escherichia coli ribose-5-phosphate isomerase: a ubiquitous enzyme of the pentose phosphate pathway and the Calvin cycle. Structure 11:31–42

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. Randy Lewis, University of Wyoming, for providing a good research environment for JSL. This research was supported by The Research Council of Norway and Helse-Vest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurora Martinez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (DOC 187 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siltberg-Liberles, J., Martinez, A. Searching distant homologs of the regulatory ACT domain in phenylalanine hydroxylase. Amino Acids 36, 235–249 (2009). https://doi.org/10.1007/s00726-008-0057-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-008-0057-2

Keywords

Navigation