Advertisement

Amino Acids

, Volume 35, Issue 2, pp 329–338 | Cite as

Chemotactic tripeptides incorporating at position 2 α-aminoacid residues with unsaturated side chains

  • G. Lucente
  • M. P. Paradisi
  • C. Giordano
  • A. Sansone
  • D. Torino
  • S. Spisani
Article

Summary.

New N-For-Met-Leu-Phe-OMe (fMLF-OMe) analogues incorporating three different γ-δ-didehydro-α-aminoacid residues (namely: Alg = (S)-Allylglycine; Dag = Diallylglycine; Cpg = 1-Aminocyclopent-3-ene-1-carboxylic acid) replacing the native (S)-Leucine have been synthesized and their activity towards human neutrophils has been evaluated in comparison with that shown by the reference tripeptide fMLF-OMe. Chemotaxis, lysozyme release and superoxide anion production have been measured. 1H NMR titration experiments and NOESY spectrum of the Cpg containing model 10 have been discussed in order to ascertain the preferred solution conformations. A fully extended (C5) conformation at position 2 and a folded conformation with two consecutive γ-turns (C7 structure) have been proposed for the Dag and Cpg containing tripeptides, respectively.

Keywords: Aminoacids with unsaturated side chains – Chemotactic peptides – Cyclopentenyl aminoacids – Conformation – Grubbs reaction – Human neutrophils 

Abbreviations:

Boc

tert-butyloxycarbonyl

BOP

(benzotriazol-1-yloxy)tris(dimethylamino)phosphonium hexafluorophosphate

DMF

dimethylformamide

EDC

1-ethyl-3-(3′-dimethylaminopropyl)carbodiimide hydrochloride

EEDQ

ethyl 2-ethoxy-1,2-dihydro-1-quinolinecarboxylate

HOBT

1-hydroxybenzotriazole

KRPG

Krebs-Ringer phosphate containing 0.1% w/v d-glucose

RCM

ring-closing metathesis

TEA

triethylamine

TFA

trifluoroacetic acid

TLC

thin-layer chromatography

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aschi, M, Lucente, G, Mazza, F, Mollica, A, Morera, E, Nalli, M, Paglialunga, PM 2003Peptide backbone folding induced by Cα-tetrasubstituted cyclic α-aminoacids 4-amino-1,2-dithiolane-4-carboxylic acid (Adt) and 1-aminocyclopentane-1-carboxylic acid (Ac5c). A joint computational and experimental studyOrg Biomol Chem119801988PubMedCrossRefGoogle Scholar
  2. Conti, C, DeAmici, M, Joppolo di Ventimiglia, S, Stensbol, TB, Madsen, U, Brauner-Osborne, H, Russo, E, DeSarro, G, Bruno, G, DeMicheli, C 2003Synthesis and anticonvulsant activity of novel bicyclic acidic amino acidsJ Med Chem4631023108PubMedCrossRefGoogle Scholar
  3. Dentino, AR, Raj, PA, Bhandary, KK, Wilson, ME, Levine, MJ 1991Role of peptide backbone conformation on biological activity of chemotactic peptidesJ Biol Chem2661846018468PubMedGoogle Scholar
  4. Fabbri, E, Spisani, S, Biondi, C, Barbin, L, Colamussi, ML, Cariani, A, Traniello, S, Torrini, I, Ferretti, ME 1997Two For-Met-Leu-Phe-OMe analogues trigger selective neutrophil responses. A differential effect on cytosolic free Ca+2 Biochim Biophys Acta1359233240PubMedCrossRefGoogle Scholar
  5. Harvath, L 1991Neutrophil chemotactic factorsGoldberg, ID eds. Cell motility factorsBirkhäuserBasel3552Google Scholar
  6. Hodgson, DM, Thompson, AJ, Wadman, S, Keats, CJ 1999On the possibility of carbamate-directed hydroboration. An approach to the asymmetric synthesis of 1-aminocyclopentane-1,3-dicarboxylic acidTetrahedron551081510634CrossRefGoogle Scholar
  7. Kotha, S, Sreenivasachary, N 1998Synthesis of constrained α-aminoacid derivatives via ring-closing metathesisBioorg Med Chem Lett8257260PubMedCrossRefGoogle Scholar
  8. Kotha, S, Sreenivasachary, N, Mohanraja, K, Durani, S 2001Modification of constrained peptides by ring closing metathesis reactionBioorg Med Chem Lett1114211423PubMedCrossRefGoogle Scholar
  9. Lajoie, G, Kraus, JL 1984Rapid and efficient method for the N-formylation of C-blocked peptidesPeptides5653654PubMedCrossRefGoogle Scholar
  10. Le, Y, Zhou, Y, Tao, H, Wang, JM 2004Formylpeptide receptor and their potentioal roles in inflammatory airwayClin Exp All Rev4155161CrossRefGoogle Scholar
  11. Millet, R, Goossens, L, Goossens, J-F, Chavatte, P, Bertrand-Caumont, K, Houssin, R, Henichart, J-P 2001Conformation of the tripeptide Cbz-Pro-Leu-Trp-OBzl(CF3)2 deduced from two-dimensional 1H-NMR and conformational energy calculations is related to its affinity for NK1-receptorJ Peptide Sci7323330CrossRefGoogle Scholar
  12. Mills, JS, Miettinen, HM, Barnidge, D, Vlases, MJ, Wimer-Mackin, S, Dratz, EA, Sunner, J, Jesaitis, J 1998Identification of a ligand binding site in the human neutrophil formyl peptide receptor using a site-specific fluorescent photoaffinity label and mass spectrometryJ Biol Chem2731042810435PubMedCrossRefGoogle Scholar
  13. Miyazaki, M, Kodama, H, Fujita, I, Hamasaki, Y, Miyazaki, S 1995Dimeric chemotactic peptides discriminate between chemotaxis and superoxide production of human neutrophilsJ Biochem117489494PubMedGoogle Scholar
  14. Mollica, A, Paglialunga, PM, Torino, D, Spisani, S, Lucente, G 2006Hybrid α/β-peptides: For-Met-Leu-Phe-OMe analogues containing geminally substituted β2,2- and β3,3-amino acids at the central positionAmino Acids30453459PubMedCrossRefGoogle Scholar
  15. Pagani Zecchini, G, Paglialunga Paradisi, M, Torrini, I, Lucente, G, Gavuzzo, E, Mazza, F, Pochetii, G, Paci, M, Sette, M, Di Nola, A, Veglia, G, Traniello, S, Spisani, S 1993Synthesis, conformation, and activity of HCO-Met-ΔzLeu-Phe-OMe, an active analogue of chemotactic N-formyltripeptidesBiopolymers33437451PubMedCrossRefGoogle Scholar
  16. Park, K-H, Olmstead, MM, Kurth, J 1998Diastereoselective synthesis of cyclopentanoids with hydantoin and isoxazoline substituentsJ Org Chem63113117PubMedCrossRefGoogle Scholar
  17. Rao, BNN, Kumar, A, Balaram, H, Ravi, A, Balaram, P 1983Nuclear Overhauser effects and circular dichroism as probes of β-turn conformations in acyclic and cyclic peptides with Pro-X sequenceJ Am Chem Soc10574237428CrossRefGoogle Scholar
  18. Rathore, RS 2005Conformational investigations on analogs of inflammation response inducing chemotactic tripeptide fMLPBiopolymers (Pept Sci)80651664CrossRefGoogle Scholar
  19. Selvatici, R, Falzarano, S, Mollica, A, Spisani, S 2006Signal transduction pathways triggered by selective formylpeptide analogues in human neutrophilsEur J Pharmacol534111PubMedCrossRefGoogle Scholar
  20. Toniolo, C, Crisma, M, Valle, G, Bonora, GM, Polinelli, S, Becker, EL, Freer, RJ, Sudhanand, R, Balani Rao, R, Balaram, P, Sukumar, M 1989Conformationally restricted formyl methionyl tripeptide chemoattractants: a three-dimensional structure-activity study of analogs incorporating a Cα,α-dialkylated glycine at position 2Peptide Res2275289Google Scholar
  21. Torrini, I, Paglialunga, PM, Pagani Zecchini, G, Lucente, G, Gavuzzo, E, Mazza, F, Pochetti, G, Traniello, S, Spisani, S 1997Synthesis, conformation, and biological activity of two fMLP-OMe analogues containing the new 2-[2′-(methylthio)ethyl]methionine residueBiopolymers42415426PubMedCrossRefGoogle Scholar
  22. Zigmond, SH, Hirsc, JG 1973Leukocyte locomotion and chemotaxis. New methods for evaluation and demonstration of cell-derived chemotactic factorsJ Exp Med137387410PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • G. Lucente
    • 1
    • 2
  • M. P. Paradisi
    • 1
    • 2
  • C. Giordano
    • 2
  • A. Sansone
    • 1
  • D. Torino
    • 1
  • S. Spisani
    • 3
  1. 1.Dipartimento di Studi FarmaceuticiUniversità degli Studi di Roma ‘La Sapienza’RomeItaly
  2. 2.Istituto di Chimica Biomolecolare del CNR, c/o Dipartimento di Studi FarmaceuticiUniversità degli Studi di Roma ‘La Sapienza’RomeItaly
  3. 3.Dipartimento di Biochimica e Biologia MolecolareUniversità di FerraraFerraraItaly

Personalised recommendations