Advertisement

Amino Acids

, Volume 35, Issue 2, pp 355–358 | Cite as

Identification and characterisation of arsenite (+3 Oxidation State) methyltransferase (AS3MT) in mouse neuroblastoma cell line N1E-115

  • J. P. P. John
  • J.-E. Oh
  • A. Pollak
  • G. Lubec
Article

Summary.

Handling and detoxification of metals by enzymes is a major issue that is not in the focus of current biomedical research concepts. The finding of the presence of arsenic (+3 Oxidation State) methyltransferase (AS3MT) in neuroblastoma cells NE-115 as a high abundance protein made us investigate primary structure of AS3MT reflecting an example of metal-handling in eucaryotes. Proteins extracted from NE-115 cells were run on 2-DE followed by two different mass spectrometrical methods. High sequence coverage was obtained by multiple protease digestion and a sequence conflict was solved at arginine 335.

These findings are important when future studies on this enzyme are designed at the protein level and in particular, when antibodies against this protein will be generated.

Keywords: Arsenite methyltransferase – MALDI-TOF-TOF – Nano-LC-ESI-MS/MS – Neuroblastoma cells 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bradford, MM 1976A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye bindingAnal Biochem72248254PubMedCrossRefGoogle Scholar
  2. Challenger, F 1951Biological methylationAdv Enzymol12429491Google Scholar
  3. Chen, WQ, Kang, SU, Lubec, G 2006Protein profiling by the combination of two independent mass spectrometry techniquesNat Protoc114461452PubMedCrossRefGoogle Scholar
  4. Crecelius, EA 1977Changes in the chemical speciation of arsenic following ingestion by manEnviron Health Perspect19147150PubMedCrossRefGoogle Scholar
  5. Cullen, WR, McBride, BC, Reglinski, J 1984The reduction of trimethylarsineoxide to trimethylarsine by thiols: a mechanistic model for the biological reduction of arsenicalsJ Inorg Biochem214560CrossRefGoogle Scholar
  6. Gerhard, DS Wagner, L Feingold, EA Shenmen, CM Grouse, LH Schuler, G Klein, SL Old, S Rasooly, R Good, P Guyer, M Peck, AM Derge, JG Lipman, D Collins, FS Jang, W Sherry, S Feolo, M Misquitta, L Lee, E Rotmistrovsky, K Greenhut, SF Schaefer, CF Buetow, K Bonner, TI Haussler, D Kent, J Kiekhaus, M Furey, T Brent, M Prange, C Schreiber, K Shapiro, N Bhat, NK Hopkins, RF Hsie, F Driscoll, T Soares, MB Casavant, TL Scheetz, TE Brown-stein, MJ Usdin, TB Toshiyuki, S Carninci, P Piao, Y Dudekula, DB Ko, MS Kawakami, K Suzuki, Y Sugano, S Gruber, CE Smith, MR Simmons, B Moore, T Waterman, R Johnson, SL Ruan, Y Wei, CL Mathavan, S Gunaratne, PH Wu, J Garcia, AM Hulyk, SW Fuh, E Yuan, Y Sneed, A Kowis, C Hodgson, A Muzny, DM McPherson, J Gibbs, RA Fahey, J Helton, E Ketteman, M Madan, A Rodrigues, S Sanchez, A Whiting, M Madari, A Young, AC Wetherby, KD Granite, SJ Kwong, PN Brinkley, CP Pearson, RL Bouffard, GG Blakesly, RW Green, ED Dickson, MC Rodriguez, AC Grimwood, J Schmutz, J Myers, RM Butterfield, YS Griffith, M Griffith, OL Krzywinski, MI Liao, N Morin, R Palmquist, D Petrescu, AS Skalska, U Smailus, DE Stott, JM Schnerch, A Schein, JE Jones, SJ Holt, RA Baross, A Marra, MA Clifton, S Makowski, KA Bosak, S Malek, J MGC Project Team2004The status, quality, and expansion of the NIH full-length cDNA project: the mammalian gene collection (MGC)Genome Res1421212127PubMedCrossRefGoogle Scholar
  7. Hayakawa, T, Kobayashi, Y, Cui, X, Hirano, S 2005A new metabolic pathway of arsenite: arsenite-glutathione complexes are substrates for human arsenic methyltransferase Cyt19Arch Toxicol79183191PubMedCrossRefGoogle Scholar
  8. Healy, SM, Casarez, EA, Ayala-Fierro, F, Aposhian, H 1998Enzymatic methylation of arsenic compounds. V. Arsenite methyltransferase activity in tissues of miceToxicol Appl Pharmacol1486570PubMedCrossRefGoogle Scholar
  9. Lin, S, Shi, Q, Nix, FB, Styblo, M, Beck, MA, Herbin-Davis, KM, Hall, LL, Simeonsson, JB, Thomas, DJ 2002A novel S-adenosyl-L-methionine: arsenic(III) methyltransferase from rat liver cytosolJ Biol Chem291079510803CrossRefGoogle Scholar
  10. Mukhopadhyay, R, Rosen, BP 2002Arsenate reductases in prokaryotes and eukaryotesEnviron Health Perspect110745748PubMedGoogle Scholar
  11. Oh, JE, Krapfenbauer, K, Fountoulakis, M, Frischer, T, Lubec, G 2004Evidence for the existence of hypothetical proteins in human bronchial epithelial, fibroblast, amnion, lymphocyte, mesothelial and kidney cell linesAmino Acids26918PubMedCrossRefGoogle Scholar
  12. Oh, JE, Karlmark Raja, K, Shin, JH, Hengstschläger, M, Pollak, A, Lubec, G 2005The neuronal differentiation process involves a series of antioxidant proteinsAmino Acids29273282PubMedCrossRefGoogle Scholar
  13. Oh, JE, Karlmark Raja, K, Shin, JH, Pollak, A, Hengstschlager, M, Lubec, G 2006Cytoskeleton changes following differentiation of N1E-115 neuroblastoma cell lineAmino Acids31289298PubMedCrossRefGoogle Scholar
  14. Phillips et al. (1999) Genebank submission, available under (http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nuccore&val=6006812)
  15. Suckau, D, Resemann, A, Schuerenberg, M, Hufnagel, P 2003A novel MALDI LIFT-TOF/TOF mass spectrometer for proteomicsAnal Bioanal Chem376952965PubMedCrossRefGoogle Scholar
  16. Walton, FS, Waters, SB, Jolley, SL, LeCluyse, EL, Thomas, DJ, Styblo, M 2003Selenium compounds modulate the activity of recombinant rat AsIII-methyltransferase and the methylation of arsenite by rat and human hepatocytesChem Res Toxicol16261265PubMedCrossRefGoogle Scholar
  17. Waters, SB, Styblo, M, Thomas, DJ 2004Endogenous reductants support the catalytic function of recombinant rat cyt19, an arsenic methyltransferaseChem Res Toxicol17404409PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • J. P. P. John
    • 1
  • J.-E. Oh
    • 1
  • A. Pollak
    • 1
  • G. Lubec
    • 1
  1. 1.Department of PediatricsMedical University of ViennaViennaAustria

Personalised recommendations