Advertisement

Amino Acids

, Volume 35, Issue 2, pp 375–382 | Cite as

Cleavage mechanism of the H5N1 hemagglutinin by trypsin and furin

  • X.-L. Guo
  • L. Li
  • D.-Q. Wei
  • Y.-S. Zhu
  • K.-C. Chou
Article

Summary.

The cleavage property of hemagglutinin (HA) by different proteases was the prime determinant for influenza A virus pathogenicity. In order to understand the cleavage mechanism, molecular modeling tools were utilized to study the coupled model systems of the proteases, i.e., trypsin and furin and peptides of the cleavage sites specific to H5N1 and H1 HAs, which constitute models of HA precursor in complex with cleavage proteases. The peptide segments ‘RERRRKKR ↓ G’ and ‘SIQSR ↓ G’ from the high pathogenic H5N1 H5 and the low pathogenic H1N1 H1 cleavage sites were docking to the trypsin and furin active pockets, respectively. It was observed through the docking studies that trypsin was able to recognize and cleave both the high pathogenic and low pathogenic hemagglutinin, while furin could only cleave the high pathogenic hemagglutinin. An analysis of binding energies indicated that furin got most of its selectivity due to the interactions with P1, P4, and P6, while having less interaction with P2 and little interactions with P3, P5, P7, and P8. Some mutations of H5N1 H5 cleavage sequence fitted less well into furin and would reduce high pathogenicity of the virus. These findings hint that we should focus at the subsites P1, P4, and P6 for developing drugs against H5N1 viruses.

Keywords: Trypsin – Furin – H5N1 hemagglutinin – Cleavage mechanism – Pathogenicity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Buck, M, Bouguet-Bonnet, S, Pastor, RW, MacKerell, AD,Jr 2006Importance of the CMAP correction to the CHARMM22 protein force field: dynamics of hen lysozymeBiophys J90L36L38PubMedCrossRefGoogle Scholar
  2. Chou, KC 1993A vectorized sequence-coupling model for predicting HIV protease cleavage sites in proteinsJ Biol Chem2681693816948PubMedGoogle Scholar
  3. Chou, KC 1996Review: prediction of HIV protease cleavage sites in proteinsAnal Biochem233114PubMedCrossRefGoogle Scholar
  4. Chou, KC 2004aInsights from modelling the 3D structure of the extracellular domain of alpha7 nicotinic acetylcholine receptorBiochem Biophys Res Commun319433438CrossRefGoogle Scholar
  5. Chou, KC 2004bMolecular therapeutic target for type-2 diabetesJ Proteome Res312841288CrossRefGoogle Scholar
  6. Chou, KC 2004cReview: structural bioinformatics and its impact to biomedical scienceCurr Med Chem1121052134Google Scholar
  7. Chou, KC 2005aCoupling interaction between thromboxane A2 receptor and alpha-13 subunit of guanine nucleotide-binding proteinJ Proteome Res416811686CrossRefGoogle Scholar
  8. Chou, KC 2005bModeling the tertiary structure of human cathepsin-EBiochem Biophys Res Commun3315660CrossRefGoogle Scholar
  9. Chou, KC, Carlacci, L 1991Simulated annealing approach to the study of protein structuresProtein Eng4661667PubMedCrossRefGoogle Scholar
  10. Chou, KC, Wei, DQ, Du, QS, Sirois, S, Zhong, WZ 2006Review: progress in computational approach to drug development against SARSCurr Med Chem1332633270PubMedCrossRefGoogle Scholar
  11. Chou, KC, Wei, DQ, Zhong, WZ 2003Binding mechanism of coronavirus main proteinase with ligands and its implication to drug design against SARSBiochem Biophys Res Commun308148151Erratum: ibid., 2003, Vol. 310, 675PubMedCrossRefGoogle Scholar
  12. Du, QS, Sun, H, Chou, KC 2007aInhibitor design for SARS coronavirus main protease based on “distorted key theory”Med Chem316CrossRefGoogle Scholar
  13. Du, QS, Wang, S, Wei, DQ, Sirois, S, Chou, KC 2005Molecular modelling and chemical modification for finding peptide inhibitor against SARS CoV MproAnal Biochem337262270PubMedCrossRefGoogle Scholar
  14. Du, QS, Wang, SQ, Chou, KC 2007bAnalogue inhibitors by modifying oseltamivir based on the crystal neuraminidase structure for treating drug-resistant H5N1 virusBiochem Biophys Res Commun362525531CrossRefGoogle Scholar
  15. Du, QS, Wang, SQ, Wei, DQ, Zhu, Y, Guo, H, Sirois, S, Chou, KC 2004Polyprotein cleavage mechanism of SARS CoV Mpro and chemical modification of octapeptidePeptides2518571864PubMedCrossRefGoogle Scholar
  16. Hatta, M, Gao, P, Halfmann, P, Kawaoka, Y 2001Molecular basis for high virulence of Hong Kong H5N1 influenza A virusesScience29318401842PubMedCrossRefGoogle Scholar
  17. Henrich, S, Cameron, A, Bourenkov, GP, Kiefersauer, R, Huber, R, Lindberg, I, Bode, W, Than, ME 2003The crystal structure of the proprotein processing proteinase furin explains its stringent specificityNat Struct Biol10520526PubMedCrossRefGoogle Scholar
  18. Henrich, S, Lindberg, I, Bode, W, Than, ME 2005Proprotein convertase models based on the crystal structures of furin and kexin: explanation of their specificityJ Mol Biol345211227PubMedCrossRefGoogle Scholar
  19. Holyoak, T, Kettner, CA, Petsko, GA, Fuller, RS, Ringe, D 2004Structural basis for differences in substrate selectivity in Kex2 and furin protein convertasesBiochemistry4324122421PubMedCrossRefGoogle Scholar
  20. Ibrahim, BS, Shamaladevi, N, Pattabhi, V 2004Trypsin activity reduced by an autocatalytically produced nonapeptideJ Biomol Struct Dyn21737744PubMedGoogle Scholar
  21. Kawaoka, Y, Webster, RG 1988Sequence requirements for cleavage activation of influenza virus hemagglutinin expressed in mammalian cellsProc Natl Acad Sci USA85324328PubMedCrossRefGoogle Scholar
  22. Kido, H, Sakai, K, Kishino, Y, Tashiro, M 1993Pulmonary surfactant is a potential endogenous inhibitor of proteolytic activation of Sendai virus and influenza A virusFEBS Lett322115119PubMedCrossRefGoogle Scholar
  23. Krysan, DJ, Rockwell, NC, Fuller, RS 1999Quantitative characterization of furin specificity. Energetics of substrate discrimination using an internally consistent set of hexapeptidyl methylcoumarinamidesJ Biol Chem2742322923234PubMedCrossRefGoogle Scholar
  24. Ma, W, Tang, C, Lai, L 2005Specificity of trypsin and chymotrypsin: loop-motion-controlled dynamic correlation as a determinantBiophys J8911831193PubMedCrossRefGoogle Scholar
  25. Martin, J, Wharton, SA, Lin, YP, Takemoto, DK, Skehel, JJ, Wiley, DC, Steinhauer, DA 1998Studies of the binding properties of influenza hemagglutinin receptor-site mutantsVirology241101111PubMedCrossRefGoogle Scholar
  26. Morris, GM, Goodsell, DS, Huey, R, Olson, AJ 1996Distributed automated docking of flexible ligands to proteins: parallel applications of AutoDock 2.4J Comput Aided Mol Des10293304PubMedCrossRefGoogle Scholar
  27. Radisky, ES, Lee, JM, Lu, CJ, Koshland, DE,Jr 2006Insights into the serine protease mechanism from atomic resolution structures of trypsin reaction intermediatesProc Natl Acad Sci USA10368356840PubMedCrossRefGoogle Scholar
  28. Rozan, L, Krysan, DJ, Rockwell, NC, Fuller, RS 2004Plasticity of extended subsites facilitates divergent substrate recognition by Kex2 and furinJ Biol Chem2793565635663PubMedCrossRefGoogle Scholar
  29. Schechter, I, Berger, A 1967On the size of the active site in protease. I. PapainBiochem Biophys Res Commun27157162PubMedCrossRefGoogle Scholar
  30. Schmidt, A, Jelsch, C, Ostergaard, P, Rypniewski, W, Lamzin, VS 2003Trypsin revisited: crystallography AT (SUB) atomic resolution and quantum chemistry revealing details of catalysisJ Biol Chem2784335743362PubMedCrossRefGoogle Scholar
  31. Sirois, S, Wei, DQ, Du, QS, Chou, KC 2004Virtual screening for SARS-CoV protease based on KZ7088 pharmacophore pointsJ Chem Inf Comput Sci4411111122PubMedCrossRefGoogle Scholar
  32. Steinhauer, DA 1999Role of hemagglutinin cleavage for the pathogenicity of influenza virusVirology258120PubMedCrossRefGoogle Scholar
  33. Stevens, J, Blixt, O, Tumpey, TM, Taubenberger, JK, Paulson, JC, Wilson, IA 2006Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virusScience312404410PubMedCrossRefGoogle Scholar
  34. Wang, JF, Wei, DQ, Li, L, Zheng, SY, Li, YX, Chou, KC 2007a3D structure modeling of cytochrome P450 2C19 and its implication for personalized drug designBiochem Biophys Res Commun355513519Corrigendum: ibid, 2007, Vol. 357, 330CrossRefGoogle Scholar
  35. Wang, SQ, Du, QS, Chou, KC 2007bStudy of drug resistance of chicken influenza A virus (H5N1) from homology-modeled 3D structures of neuraminidasesBiochem Biophys Res Commun354634640CrossRefGoogle Scholar
  36. Wang, SQ, Du, QS, Zhao, K, Li, AX, Wei, DQ, Chou, KC 2007cVirtual screening for finding natural inhibitor against cathepsin-L for SARS therapyAmino Acids33129135CrossRefGoogle Scholar
  37. Wei, DQ, Du, QS, Sun, H, Chou, KC 2006aInsights from modeling the 3D structure of H5N1 influenza virus neuraminidase and its binding interactions with ligandsBiochem Biophys Res Commun34410481055CrossRefGoogle Scholar
  38. Wei, DQ, Sirois, S, Du, QS, Arias, HR, Chou, KC 2005Theoretical studies of Alzheimer’s disease drug candidate [(2,4-dimethoxy) benzylidene]-anabaseine dihydrochloride (GTS-21) and its derivativesBiochem Biophys Res Commun33810591064PubMedCrossRefGoogle Scholar
  39. Wei, DQ, Zhang, R, Du, QS, Gao, WN, Li, Y, Gao, H, Wang, SQ, Zhang, X, Li, AX, Sirois, S, Chou, KC 2006bAnti-SARS drug screening by molecular dockingAmino Acids317380CrossRefGoogle Scholar
  40. Wei, H, Zhang, R, Wang, C, Zheng, H, Chou, KC, Wei, DQ 2007Molecular insights of SAH enzyme catalysis and their implication for inhibitor designJ Theor Biol244692702PubMedCrossRefGoogle Scholar
  41. Wheatley, JL, Holyoak, T 2007Differential P1 arginine and lysine recognition in the prototypical proprotein convertase Kex2Proc Natl Acad Sci USA10466266631PubMedCrossRefGoogle Scholar
  42. Wiley, DC, Skehel, JJ 1987The structure and function of the hemagglutinin membrane glycoprotein of influenza virusAnnu Rev Biochem56365394PubMedCrossRefGoogle Scholar
  43. Zhang, R, Wei, DQ, Du, QS, Chou, KC 2006Molecular modeling studies of peptide drug candidates against SARSMed Chem2309314PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • X.-L. Guo
    • 1
  • L. Li
    • 1
  • D.-Q. Wei
    • 1
    • 2
  • Y.-S. Zhu
    • 1
  • K.-C. Chou
    • 2
  1. 1.College of Life Science and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Gordon Life Science InstituteSan DiegoU.S.A.

Personalised recommendations