Amino Acids

, Volume 35, Issue 2, pp 359–364 | Cite as

The role of heme oxygenase-1 in down regulation of PGE2 production by taurine chloramine and taurine bromamine in J774.2 macrophages

  • R. Olszanecki
  • M. Kurnyta
  • R. Biedroń
  • P. Chorobik
  • M. Bereta
  • J. Marcinkiewicz


Taurine chloramine (TauCl) and taurine bromamine (TauBr), products of myeloperoxidase halide system, exert anti-inflammatory properties. TauCl was demonstrated to inhibit the production of a variety of pro-inflammatory mediators including cyclooxygenase-2 (COX-2) dependent production of prostaglandin E2 (PGE2). Recently we have demonstrated that both major leukocyte haloamines, TauCl and TauBr, induced expression of HO-1 in non-activated and LPS-activated J774.2 macrophages. In this study, we have shown that TauCl and TauBr, at non-cytotoxic concentrations, inhibited the production of (PGE2) without altering the expression of COX-2 protein, in LPS/IFN-γ stimulated J774.2 cells. The inhibitory effect of TauCl and TauBr was reversed by chromium III mesoporhyrin (CrMP), an inhibitor of HO-1 activity. Our data suggest that HO-1 might participate in anti-inflammatory effects of TauCl/TauBr possibly by inhibition of COX-2 activity and decrease of PGE2 production.

Keywords: Inflammation – Macrophages – Heme oxygenase-1 – Taurine bromamine – Taurine chloramine – Prostaglandin E2 – Cyclooxygenase-2 





dimethyl sulfoxide


3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide


fetal calf serum


heme oxygenase-1


interferon γ










inducible nitric oxide synthase




phosphate buffered saline

PD 98059



prostaglandin E2


prostaglandin J2


reactive oxygen species


room temperature

SB 203580



dodecyl sodium sulfate


taurine bromamine


taurine chloramine


tumor growth factor-β


tumor necrosis factor


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abraham, NG 2003Therapeutic applications of human heme oxygenase gene transfer and gene therapyCurr Pharm Des925132524PubMedCrossRefGoogle Scholar
  2. Chen, IC, Huang, KC, Lin, WW 2006HMG-CoA reductase inhibitors upregulate heme oxygenase-1 expression in murine RAW264.7 macrophages via ERK, P38 MAPK and protein kinase G pathwaysCell Signal183239PubMedCrossRefGoogle Scholar
  3. Gong, P, Cederbaum, AI, Nieto, N 2003Increased expression of cytochrome P450 2E1 induces heme oxygenase-1 through ERK MAPK pathwayJ Biol Chem2782969329700PubMedCrossRefGoogle Scholar
  4. Haider, A, Olszanecki, R, Gryglewski, R, Schwartzman, ML, Lianos, E, Kappas, A, Nasjletti, A, Abraham, NG 2002Regulation of cyclooxygenase by the heme–heme oxygenase system in microvessel endothelial cellsJ Pharmacol Exp Ther300188194PubMedCrossRefGoogle Scholar
  5. Kontny, E, Rudnicka, W, Kowalczewski, J, Marcinkiewicz, J, Maslinski, W 2003Selective inhibition of cyclooxygenase 2-generated prostaglandin E2 synthesis in rheumatoid arthritis synoviocytes by taurine chloramineArthritis Rheum4815511555PubMedCrossRefGoogle Scholar
  6. Kontny, E, Szczepanska, K, Kowalczewski, J, Kurowska, M, Janicka, I, Marcinkiewicz, J, Maslinski, W 2000The mechanism of taurine chloramine inhibition of cytokine (interleukin-6, interleukin-8) production by rheumatoid arthritis fibroblast-like synoviocytesArthritis Rheum4321692177PubMedCrossRefGoogle Scholar
  7. Marcinkiewicz, J, Grabowska, A, Bereta, J, Stelmaszynska, T 1995Taurine chloramine, a product of activated neutrophils, inhibits in vitro the generation of nitric oxide and other macrophage inflammatory mediatorsJ Leukoc Biol58667674PubMedGoogle Scholar
  8. Marcinkiewicz, J, Chain, B, Nowak, B, Grabowska, A, Bryniarski, K, Baran, J 2000Antimicrobial and cytotoxic activity of hypochlorous acid: interactions with taurine and nitriteInflamm Res49280289PubMedCrossRefGoogle Scholar
  9. Marcinkiewicz, J, Mak, M, Bobek, M, Biedron, R, Bialecka, A, Koprowski, M, Kontny, E, Maslinski, W 2005Is there a role of taurine bromamine in inflammation? Interactive effects with nitrite and hydrogen peroxideInflamm Res544249PubMedCrossRefGoogle Scholar
  10. Marcinkiewicz, J, Kurnyta, M, Biedron, R, Bobek, M, Kontny, E, Maslinski, W 2006Anti-inflammatory effects of taurine derivatives (taurine chloramine, taurine bromamine, and taurolidine) are mediated by different mechanismsAdv Exp Med Biol583481492PubMedCrossRefGoogle Scholar
  11. Midwinter, RG, Peskin, AV, Vissers, MC, Winterbourn, CC 2004Extracellular oxidation by taurine chloramine activates ERK via the epidermal growth factor receptorJ Biol Chem279322053221130PubMedCrossRefGoogle Scholar
  12. Nagl, M, Hess, MW, Pfaller, K, Hengster, P, Gottardi, W 2000Bactericidal activity of micromolar N-chlorotaurine: evidence for its antimicrobial function in the human defense systemAntimicrob Agents Chemother4425072513PubMedCrossRefGoogle Scholar
  13. Olszanecki, R, Gebska, A, Kozlovski, VI, Gryglewski, RJ 2002Flavonoids and nitric oxide synthaseJ Physiol Pharmacol53571584PubMedGoogle Scholar
  14. Olszanecki, R, Marcinkiewicz, J 2004Taurine chloramine and taurine bromamine induce heme oxygenase-1 in resting and LPS-stimulated J774.2 macrophagesAmino Acids272935PubMedCrossRefGoogle Scholar
  15. Park, E, Schuller-Levis, G, Jia, JH, Quinn, MR 1997Preactivation exposure of RAW 264.7 cells to taurine chloramine attenuates subsequent production of nitric oxide and expression of iNOS mRNAJ Leukoc Biol61161166PubMedGoogle Scholar
  16. Quinn, MR, Park, E, Schuller-Levis, G 1996Taurine chloramine inhibits prostaglandin E2 production in activated RAW 264.7 cells by post-transcriptional effects on inducible cyclooxygenase expressionImmunol Lett50185188PubMedCrossRefGoogle Scholar
  17. Ryter, SW, Otterbein, LE, Morse, D, Choi, AM 2002Heme oxygenase/carbon monoxide signaling pathways: regulation and functional significanceMol Cell Biochem234–235249263PubMedCrossRefGoogle Scholar
  18. Ryter, SW, Alam, J, Choi, AM 2006Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applicationsPhysiol Rev86583650PubMedCrossRefGoogle Scholar
  19. Swierkosz, TA, Mitchell, JA, Warner, TD, Botting, RM, Vane, JR 1995Co-induction of nitric oxide synthase and cyclo-oxygenase: interactions between nitric oxide and prostanoidsBr J Pharmacol11413351342PubMedGoogle Scholar
  20. Stenson, WF, Nickells, MW, Atkinson, JP 1981Metabolism of exogenous arachidonic acid by murine macrophage-like tumor cell linesProstaglandins21675689PubMedCrossRefGoogle Scholar
  21. Thomas, EL, Bozeman, PM, Jefferson, MM, King, CC 1995Oxidation of bromide by the human leukocyte enzymes myeloperoxidase and eosinophil peroxidase. Formation of bromaminesJ Biol Chem27029062913PubMedCrossRefGoogle Scholar
  22. Vairano, M, Dello Russo, C, Pozzoli, G, Tringali, G, Preziosi, P, Navarra, P 2001A functional link between heme oxygenase and cyclo-oxygenase activities in cortical rat astrocytesBiochem Pharmacol61437441PubMedCrossRefGoogle Scholar
  23. Wagener, FA, Volk, HD, Willis, D, Abraham, NG, Soares, MP, Adema, GJ, Figdor, CG 2003Different faces of the heme-heme oxygenase system in inflammationPharmacol Rev55551571PubMedCrossRefGoogle Scholar
  24. Wijayanti, N, Kietzman, T, Immenschuh, S 2005Heme oxygenase-1 gene activation by the NAD(P)H oxidase inhibitor 4-(2-aminoethyl) benzenesulfonyl fluoride via protein kinase B, p38-dependent signalling pathway in monocytesJ Biol Chem2802182021829PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • R. Olszanecki
    • 2
  • M. Kurnyta
    • 1
  • R. Biedroń
    • 1
  • P. Chorobik
    • 1
  • M. Bereta
    • 1
  • J. Marcinkiewicz
    • 1
  1. 1.Chair of Immunology, Jagiellonian University Medical CollegeKrakówPoland
  2. 2.Chair of Pharmacology, Jagiellonian University Medical CollegeKrakówPoland

Personalised recommendations